blob: a51cf3cd901d8f0b689ae5398cab7ea6efc5d087 [file] [log] [blame]
{%- from "elasticsearch/map.jinja" import server with context %}
##################### Elasticsearch Configuration Example #####################
# This file contains an overview of various configuration settings,
# targeted at operations staff. Application developers should
# consult the guide at <http://elasticsearch.org/guide>.
#
# The installation procedure is covered at
# <http://elasticsearch.org/guide/en/elasticsearch/reference/current/setup.html>.
#
# Elasticsearch comes with reasonable defaults for most settings,
# so you can try it out without bothering with configuration.
#
# Most of the time, these defaults are just fine for running a production
# cluster. If you're fine-tuning your cluster, or wondering about the
# effect of certain configuration option, please _do ask_ on the
# mailing list or IRC channel [http://elasticsearch.org/community].
# Any element in the configuration can be replaced with environment variables
# by placing them in ${...} notation. For example:
#
# node.rack: ${RACK_ENV_VAR}
# For information on supported formats and syntax for the config file, see
# <http://elasticsearch.org/guide/en/elasticsearch/reference/current/setup-configuration.html>
################################### Cluster ###################################
# Cluster name identifies your cluster for auto-discovery. If you're running
# multiple clusters on the same network, make sure you're using unique names.
#
# cluster.name: elasticsearch
{%- if server.get('cluster', {}).name is defined %}
cluster.name: {{ server.cluster.name }}
{% endif %}
#################################### Node #####################################
# Node names are generated dynamically on startup, so you're relieved
# from configuring them manually. You can tie this node to a specific name:
#
# node.name: "Franz Kafka"
node.name: {{ server.get('name', '${HOSTNAME}') }}
# Every node can be configured to allow or deny being eligible as the master,
# and to allow or deny to store the data.
#
# Allow this node to be eligible as a master node (enabled by default):
#
node.master: {{ server.get('master', True)|lower }}
#
# Allow this node to store data (enabled by default):
#
node.data: {{ server.get('data', True)|lower }}
# You can exploit these settings to design advanced cluster topologies.
#
# 1. You want this node to never become a master node, only to hold data.
# This will be the "workhorse" of your cluster.
#
# node.master: false
# node.data: true
#
# 2. You want this node to only serve as a master: to not store any data and
# to have free resources. This will be the "coordinator" of your cluster.
#
# node.master: true
# node.data: false
#
# 3. You want this node to be neither master nor data node, but
# to act as a "search load balancer" (fetching data from nodes,
# aggregating results, etc.)
#
# node.master: false
# node.data: false
# Use the Cluster Health API [http://localhost:9200/_cluster/health], the
# Node Info API [http://localhost:9200/_nodes] or GUI tools
# such as <http://www.elasticsearch.org/overview/marvel/>,
# <http://github.com/karmi/elasticsearch-paramedic>,
# <http://github.com/lukas-vlcek/bigdesk> and
# <http://mobz.github.com/elasticsearch-head> to inspect the cluster state.
# A node can have generic attributes associated with it, which can later be used
# for customized shard allocation filtering, or allocation awareness. An attribute
# is a simple key value pair, similar to node.key: value, here is an example:
#
# node.rack: rack314
{%- if server.rack is defined %}
node.rack: {{ server.rack }}
{%- endif %}
# By default, multiple nodes are allowed to start from the same installation location
# to disable it, set the following:
# node.max_local_storage_nodes: 1
{%- if server.get('threadpool', {}).get('bulk', {}).queue_size is defined %}
# For bulk operations. Thread pool type is fixed with a size of # of available processors.
threadpool.bulk.queue_size: {{ server.threadpool.bulk.queue_size }}
{%- endif %}
#################################### Index ####################################
# You can set a number of options (such as shard/replica options, mapping
# or analyzer definitions, translog settings, ...) for indices globally,
# in this file.
#
# Note, that it makes more sense to configure index settings specifically for
# a certain index, either when creating it or by using the index templates API.
#
# See <http://elasticsearch.org/guide/en/elasticsearch/reference/current/index-modules.html> and
# <http://elasticsearch.org/guide/en/elasticsearch/reference/current/indices-create-index.html>
# for more information.
# Set the number of shards (splits) of an index (5 by default):
#
index.number_of_shards: {{ server.get('index', {}).get('shards', 5) }}
# Set the number of replicas (additional copies) of an index (1 by default):
#
index.number_of_replicas: {{ server.get('index', {}).get('replicas', 1) }}
# Note, that for development on a local machine, with small indices, it usually
# makes sense to "disable" the distributed features:
#
# index.number_of_shards: 1
# index.number_of_replicas: 0
# These settings directly affect the performance of index and search operations
# in your cluster. Assuming you have enough machines to hold shards and
# replicas, the rule of thumb is:
#
# 1. Having more *shards* enhances the _indexing_ performance and allows to
# _distribute_ a big index across machines.
# 2. Having more *replicas* enhances the _search_ performance and improves the
# cluster _availability_.
#
# The "number_of_shards" is a one-time setting for an index.
#
# The "number_of_replicas" can be increased or decreased anytime,
# by using the Index Update Settings API.
#
# Elasticsearch takes care about load balancing, relocating, gathering the
# results from nodes, etc. Experiment with different settings to fine-tune
# your setup.
# Use the Index Status API (<http://localhost:9200/A/_status>) to inspect
# the index status.
#################################### Paths ####################################
# Path to directory containing configuration (this file and logging.yml):
#
# path.conf: /path/to/conf
# Path to directory where to store index data allocated for this node.
#
# path.data: /path/to/data
{%- if server.get('path', {}).data is defined %}
path.data = {{ server.path.data }}
{%- endif %}
#
# Can optionally include more than one location, causing data to be striped across
# the locations (a la RAID 0) on a file level, favouring locations with most free
# space on creation. For example:
#
# path.data: /path/to/data1,/path/to/data2
# Path to temporary files:
#
# path.work: /path/to/work
# Path to log files:
#
# path.logs: /path/to/logs
{%- if server.get('path', {}).logs is defined %}
path.logs = {{ server.path.logs }}
{%- endif %}
# Path to where plugins are installed:
#
# path.plugins: /path/to/plugins
#
{%- if server.snapshot is defined %}
path.repo:
{%- for repo_name, repo in server.snapshot.iteritems() %}
- {{ repo.path }}
{%- endfor %}
{%- endif %}
#################################### Plugin ###################################
# If a plugin listed here is not installed for current node, the node will not start.
#
# plugin.mandatory: mapper-attachments,lang-groovy
################################### Memory ####################################
# Elasticsearch performs poorly when JVM starts swapping: you should ensure that
# it _never_ swaps.
#
# Set this property to true to lock the memory:
#
# bootstrap.mlockall: true
{%- if server.mlockall is defined %}
bootstrap.mlockall: {{ server.mlockall|lower }}
{%- endif %}
# Make sure that the ES_MIN_MEM and ES_MAX_MEM environment variables are set
# to the same value, and that the machine has enough memory to allocate
# for Elasticsearch, leaving enough memory for the operating system itself.
#
# You should also make sure that the Elasticsearch process is allowed to lock
# the memory, eg. by using `ulimit -l unlimited`.
############################## Network And HTTP ###############################
# Elasticsearch, by default, binds itself to the 0.0.0.0 address, and listens
# on port [9200-9300] for HTTP traffic and on port [9300-9400] for node-to-node
# communication. (the range means that if the port is busy, it will automatically
# try the next port).
# Set both 'bind_host' and 'publish_host':
#
# network.host: 192.168.0.1
{%- if server.get('bind', {}).address is defined %}
network.host: {{ server.bind.address }}
{%- endif %}
# Set specifically the address other nodes will use to communicate with this
# node. If not set, it is automatically derived. It must point to an actual
# IP address.
{%- if server.publish_host is defined %}
network.publish_host: {{ server.publish_host }}
{%- endif %}
# Set a custom port for the node to node communication (9300 by default):
#
# transport.tcp.port: 9300
# Enable compression for all communication between nodes (disabled by default):
#
# transport.tcp.compress: true
# Set a custom port to listen for HTTP traffic:
#
# http.port: 9200
{%- if server.get('bind', {}).port is defined %}
http.port: {{ server.bind.port }}
{%- endif %}
# Set a custom allowed content length:
#
# http.max_content_length: 100mb
# Enable or disable cross-origin resource sharing
{%- if server.get('cors', {}).enabled is defined %}
http.cors.enabled: {{ server.cors.enabled|lower }}
{%- endif %}
# Which origins to allow.
{%- if server.get('cors', {}).allow_origin is defined %}
http.cors.allow-origin: {{ server.cors.allow_origin }}
{%- endif %}
# Disable HTTP completely:
#
# http.enabled: false
http.enabled: true
################################### Gateway ###################################
# The gateway allows for persisting the cluster state between full cluster
# restarts. Every change to the state (such as adding an index) will be stored
# in the gateway, and when the cluster starts up for the first time,
# it will read its state from the gateway.
# There are several types of gateway implementations. For more information, see
# <http://elasticsearch.org/guide/en/elasticsearch/reference/current/modules-gateway.html>.
# The default gateway type is the "local" gateway (recommended):
#
# gateway.type: local
# Settings below control how and when to start the initial recovery process on
# a full cluster restart (to reuse as much local data as possible when using shared
# gateway).
# Allow recovery process after N nodes in a cluster are up:
#
# gateway.recover_after_nodes: 1
{%- if server.get('gateway', {}).recover_after_nodes is defined %}
gateway.recover_after_nodes: {{ server.gateway.recover_after_nodes }}
{%- endif %}
# Set the timeout to initiate the recovery process, once the N nodes
# from previous setting are up (accepts time value):
#
# gateway.recover_after_time: 5m
{%- if server.get('gateway', {}).recover_after_time is defined %}
gateway.recover_after_time: {{ server.gateway.recover_after_time }}
{%- endif %}
# Set how many nodes are expected in this cluster. Once these N nodes
# are up (and recover_after_nodes is met), begin recovery process immediately
# (without waiting for recover_after_time to expire):
#
# gateway.expected_nodes: 2
{%- if server.get('gateway', {}).expected_nodes is defined %}
gateway.expected_nodes: {{ server.gateway.expected_nodes }}
{%- endif %}
############################# Recovery Throttling #############################
# These settings allow to control the process of shards allocation between
# nodes during initial recovery, replica allocation, rebalancing,
# or when adding and removing nodes.
# Set the number of concurrent recoveries happening on a node:
#
# 1. During the initial recovery
#
# cluster.routing.allocation.node_initial_primaries_recoveries: 4
#
# 2. During adding/removing nodes, rebalancing, etc
#
# cluster.routing.allocation.node_concurrent_recoveries: 2
# Set to throttle throughput when recovering (eg. 100mb, by default 20mb):
#
# indices.recovery.max_bytes_per_sec: 20mb
# Set to limit the number of open concurrent streams when
# recovering a shard from a peer:
#
# indices.recovery.concurrent_streams: 5
################################## Discovery ##################################
# Discovery infrastructure ensures nodes can be found within a cluster
# and master node is elected. Multicast discovery is the default.
# Set to ensure a node sees N other master eligible nodes to be considered
# operational within the cluster. Its recommended to set it to a higher value
# than 1 when running more than 2 nodes in the cluster.
#
discovery.zen.minimum_master_nodes: {{ server.get('cluster', {}).minimum_master_nodes|default(1) }}
# Set the time to wait for ping responses from other nodes when discovering.
# Set this option to a higher value on a slow or congested network
# to minimize discovery failures:
#
# discovery.zen.ping.timeout: 3s
# For more information, see
# <http://elasticsearch.org/guide/en/elasticsearch/reference/current/modules-discovery-zen.html>
# Unicast discovery allows to explicitly control which nodes will be used
# to discover the cluster. It can be used when multicast is not present,
# or to restrict the cluster communication-wise.
#
# 1. Disable multicast discovery (enabled by default):
#
discovery.zen.ping.multicast.enabled: {{ server.get('cluster', {}).get('multicast', True)|lower }}
#
# 2. Configure an initial list of master nodes in the cluster
# to perform discovery when new nodes (master or data) are started:
#
{%- if server.get('cluster', {}).members is defined %}
discovery.zen.ping.unicast.hosts: [{% for member in server.cluster.members %}"{{ member.host }}:{{ member.get('port', 9300) }}"{% if not loop.last %}, {% endif %}{% endfor %}]
{%- endif %}
# EC2 discovery allows to use AWS EC2 API in order to perform discovery.
#
# You have to install the cloud-aws plugin for enabling the EC2 discovery.
#
# For more information, see
# <http://elasticsearch.org/guide/en/elasticsearch/reference/current/modules-discovery-ec2.html>
#
# See <http://elasticsearch.org/tutorials/elasticsearch-on-ec2/>
# for a step-by-step tutorial.
# GCE discovery allows to use Google Compute Engine API in order to perform discovery.
#
# You have to install the cloud-gce plugin for enabling the GCE discovery.
#
# For more information, see <https://github.com/elasticsearch/elasticsearch-cloud-gce>.
# Azure discovery allows to use Azure API in order to perform discovery.
#
# You have to install the cloud-azure plugin for enabling the Azure discovery.
#
# For more information, see <https://github.com/elasticsearch/elasticsearch-cloud-azure>.
################################## Slow Log ##################################
# Shard level query and fetch threshold logging.
#index.search.slowlog.threshold.query.warn: 10s
#index.search.slowlog.threshold.query.info: 5s
#index.search.slowlog.threshold.query.debug: 2s
#index.search.slowlog.threshold.query.trace: 500ms
#index.search.slowlog.threshold.fetch.warn: 1s
#index.search.slowlog.threshold.fetch.info: 800ms
#index.search.slowlog.threshold.fetch.debug: 500ms
#index.search.slowlog.threshold.fetch.trace: 200ms
#index.indexing.slowlog.threshold.index.warn: 10s
#index.indexing.slowlog.threshold.index.info: 5s
#index.indexing.slowlog.threshold.index.debug: 2s
#index.indexing.slowlog.threshold.index.trace: 500ms
################################## GC Logging ################################
#monitor.jvm.gc.young.warn: 1000ms
#monitor.jvm.gc.young.info: 700ms
#monitor.jvm.gc.young.debug: 400ms
#monitor.jvm.gc.old.warn: 10s
#monitor.jvm.gc.old.info: 5s
#monitor.jvm.gc.old.debug: 2s