Allen George | 8b96bfb | 2016-11-02 08:01:08 -0400 | [diff] [blame] | 1 | // Licensed to the Apache Software Foundation (ASF) under one |
| 2 | // or more contributor license agreements. See the NOTICE file |
| 3 | // distributed with this work for additional information |
| 4 | // regarding copyright ownership. The ASF licenses this file |
| 5 | // to you under the Apache License, Version 2.0 (the |
| 6 | // "License"); you may not use this file except in compliance |
| 7 | // with the License. You may obtain a copy of the License at |
| 8 | // |
| 9 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | // |
| 11 | // Unless required by applicable law or agreed to in writing, |
| 12 | // software distributed under the License is distributed on an |
| 13 | // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| 14 | // KIND, either express or implied. See the License for the |
| 15 | // specific language governing permissions and limitations |
| 16 | // under the License. |
| 17 | |
| 18 | use std::cmp; |
| 19 | use std::io; |
| 20 | |
| 21 | /// Simple transport that contains both a fixed-length internal read buffer and |
| 22 | /// a fixed-length internal write buffer. |
| 23 | /// |
| 24 | /// On a `write` bytes are written to the internal write buffer. Writes are no |
| 25 | /// longer accepted once this buffer is full. Callers must `empty_write_buffer()` |
| 26 | /// before subsequent writes are accepted. |
| 27 | /// |
| 28 | /// You can set readable bytes in the internal read buffer by filling it with |
| 29 | /// `set_readable_bytes(...)`. Callers can then read until the buffer is |
| 30 | /// depleted. No further reads are accepted until the internal read buffer is |
| 31 | /// replenished again. |
| 32 | pub struct TBufferTransport { |
| 33 | rbuf: Box<[u8]>, |
| 34 | rpos: usize, |
| 35 | ridx: usize, |
| 36 | rcap: usize, |
| 37 | wbuf: Box<[u8]>, |
| 38 | wpos: usize, |
| 39 | wcap: usize, |
| 40 | } |
| 41 | |
| 42 | impl TBufferTransport { |
| 43 | /// Constructs a new, empty `TBufferTransport` with the given |
| 44 | /// read buffer capacity and write buffer capacity. |
| 45 | pub fn with_capacity(read_buffer_capacity: usize, |
| 46 | write_buffer_capacity: usize) |
| 47 | -> TBufferTransport { |
| 48 | TBufferTransport { |
| 49 | rbuf: vec![0; read_buffer_capacity].into_boxed_slice(), |
| 50 | ridx: 0, |
| 51 | rpos: 0, |
| 52 | rcap: read_buffer_capacity, |
| 53 | wbuf: vec![0; write_buffer_capacity].into_boxed_slice(), |
| 54 | wpos: 0, |
| 55 | wcap: write_buffer_capacity, |
| 56 | } |
| 57 | } |
| 58 | |
| 59 | /// Return a slice containing the bytes held by the internal read buffer. |
| 60 | /// Returns an empty slice if no readable bytes are present. |
| 61 | pub fn read_buffer(&self) -> &[u8] { |
| 62 | &self.rbuf[..self.ridx] |
| 63 | } |
| 64 | |
| 65 | // FIXME: do I really need this API call? |
| 66 | // FIXME: should this simply reset to the last set of readable bytes? |
| 67 | /// Reset the number of readable bytes to zero. |
| 68 | /// |
| 69 | /// Subsequent calls to `read` will return nothing. |
| 70 | pub fn empty_read_buffer(&mut self) { |
| 71 | self.rpos = 0; |
| 72 | self.ridx = 0; |
| 73 | } |
| 74 | |
| 75 | /// Copy bytes from the source buffer `buf` into the internal read buffer, |
| 76 | /// overwriting any existing bytes. Returns the number of bytes copied, |
| 77 | /// which is `min(buf.len(), internal_read_buf.len())`. |
| 78 | pub fn set_readable_bytes(&mut self, buf: &[u8]) -> usize { |
| 79 | self.empty_read_buffer(); |
| 80 | let max_bytes = cmp::min(self.rcap, buf.len()); |
| 81 | self.rbuf[..max_bytes].clone_from_slice(&buf[..max_bytes]); |
| 82 | self.ridx = max_bytes; |
| 83 | max_bytes |
| 84 | } |
| 85 | |
| 86 | /// Return a slice containing the bytes held by the internal write buffer. |
| 87 | /// Returns an empty slice if no bytes were written. |
| 88 | pub fn write_buffer_as_ref(&self) -> &[u8] { |
| 89 | &self.wbuf[..self.wpos] |
| 90 | } |
| 91 | |
| 92 | /// Return a vector with a copy of the bytes held by the internal write buffer. |
| 93 | /// Returns an empty vector if no bytes were written. |
| 94 | pub fn write_buffer_to_vec(&self) -> Vec<u8> { |
| 95 | let mut buf = vec![0u8; self.wpos]; |
| 96 | buf.copy_from_slice(&self.wbuf[..self.wpos]); |
| 97 | buf |
| 98 | } |
| 99 | |
| 100 | /// Resets the internal write buffer, making it seem like no bytes were |
| 101 | /// written. Calling `write_buffer` after this returns an empty slice. |
| 102 | pub fn empty_write_buffer(&mut self) { |
| 103 | self.wpos = 0; |
| 104 | } |
| 105 | |
| 106 | /// Overwrites the contents of the read buffer with the contents of the |
| 107 | /// write buffer. The write buffer is emptied after this operation. |
| 108 | pub fn copy_write_buffer_to_read_buffer(&mut self) { |
| 109 | let buf = { |
| 110 | let b = self.write_buffer_as_ref(); |
| 111 | let mut b_ret = vec![0; b.len()]; |
| 112 | b_ret.copy_from_slice(&b); |
| 113 | b_ret |
| 114 | }; |
| 115 | |
| 116 | let bytes_copied = self.set_readable_bytes(&buf); |
| 117 | assert_eq!(bytes_copied, buf.len()); |
| 118 | |
| 119 | self.empty_write_buffer(); |
| 120 | } |
| 121 | } |
| 122 | |
| 123 | impl io::Read for TBufferTransport { |
| 124 | fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> { |
| 125 | let nread = cmp::min(buf.len(), self.ridx - self.rpos); |
| 126 | buf[..nread].clone_from_slice(&self.rbuf[self.rpos..self.rpos + nread]); |
| 127 | self.rpos += nread; |
| 128 | Ok(nread) |
| 129 | } |
| 130 | } |
| 131 | |
| 132 | impl io::Write for TBufferTransport { |
| 133 | fn write(&mut self, buf: &[u8]) -> io::Result<usize> { |
| 134 | let nwrite = cmp::min(buf.len(), self.wcap - self.wpos); |
| 135 | self.wbuf[self.wpos..self.wpos + nwrite].clone_from_slice(&buf[..nwrite]); |
| 136 | self.wpos += nwrite; |
| 137 | Ok(nwrite) |
| 138 | } |
| 139 | |
| 140 | fn flush(&mut self) -> io::Result<()> { |
| 141 | Ok(()) // nothing to do on flush |
| 142 | } |
| 143 | } |
| 144 | |
| 145 | #[cfg(test)] |
| 146 | mod tests { |
| 147 | use std::io::{Read, Write}; |
| 148 | |
| 149 | use super::TBufferTransport; |
| 150 | |
| 151 | #[test] |
| 152 | fn must_empty_write_buffer() { |
| 153 | let mut t = TBufferTransport::with_capacity(0, 1); |
| 154 | |
| 155 | let bytes_to_write: [u8; 1] = [0x01]; |
| 156 | let result = t.write(&bytes_to_write); |
| 157 | assert_eq!(result.unwrap(), 1); |
| 158 | assert_eq!(&t.write_buffer_as_ref(), &bytes_to_write); |
| 159 | |
| 160 | t.empty_write_buffer(); |
| 161 | assert_eq!(t.write_buffer_as_ref().len(), 0); |
| 162 | } |
| 163 | |
| 164 | #[test] |
| 165 | fn must_accept_writes_after_buffer_emptied() { |
| 166 | let mut t = TBufferTransport::with_capacity(0, 2); |
| 167 | |
| 168 | let bytes_to_write: [u8; 2] = [0x01, 0x02]; |
| 169 | |
| 170 | // first write (all bytes written) |
| 171 | let result = t.write(&bytes_to_write); |
| 172 | assert_eq!(result.unwrap(), 2); |
| 173 | assert_eq!(&t.write_buffer_as_ref(), &bytes_to_write); |
| 174 | |
| 175 | // try write again (nothing should be written) |
| 176 | let result = t.write(&bytes_to_write); |
| 177 | assert_eq!(result.unwrap(), 0); |
| 178 | assert_eq!(&t.write_buffer_as_ref(), &bytes_to_write); // still the same as before |
| 179 | |
| 180 | // now reset the buffer |
| 181 | t.empty_write_buffer(); |
| 182 | assert_eq!(t.write_buffer_as_ref().len(), 0); |
| 183 | |
| 184 | // now try write again - the write should succeed |
| 185 | let result = t.write(&bytes_to_write); |
| 186 | assert_eq!(result.unwrap(), 2); |
| 187 | assert_eq!(&t.write_buffer_as_ref(), &bytes_to_write); |
| 188 | } |
| 189 | |
| 190 | #[test] |
| 191 | fn must_accept_multiple_writes_until_buffer_is_full() { |
| 192 | let mut t = TBufferTransport::with_capacity(0, 10); |
| 193 | |
| 194 | // first write (all bytes written) |
| 195 | let bytes_to_write_0: [u8; 2] = [0x01, 0x41]; |
| 196 | let write_0_result = t.write(&bytes_to_write_0); |
| 197 | assert_eq!(write_0_result.unwrap(), 2); |
| 198 | assert_eq!(t.write_buffer_as_ref(), &bytes_to_write_0); |
| 199 | |
| 200 | // second write (all bytes written, starting at index 2) |
| 201 | let bytes_to_write_1: [u8; 7] = [0x24, 0x41, 0x32, 0x33, 0x11, 0x98, 0xAF]; |
| 202 | let write_1_result = t.write(&bytes_to_write_1); |
| 203 | assert_eq!(write_1_result.unwrap(), 7); |
| 204 | assert_eq!(&t.write_buffer_as_ref()[2..], &bytes_to_write_1); |
| 205 | |
| 206 | // third write (only 1 byte written - that's all we have space for) |
| 207 | let bytes_to_write_2: [u8; 3] = [0xBF, 0xDA, 0x98]; |
| 208 | let write_2_result = t.write(&bytes_to_write_2); |
| 209 | assert_eq!(write_2_result.unwrap(), 1); |
| 210 | assert_eq!(&t.write_buffer_as_ref()[9..], &bytes_to_write_2[0..1]); // how does this syntax work?! |
| 211 | |
| 212 | // fourth write (no writes are accepted) |
| 213 | let bytes_to_write_3: [u8; 3] = [0xBF, 0xAA, 0xFD]; |
| 214 | let write_3_result = t.write(&bytes_to_write_3); |
| 215 | assert_eq!(write_3_result.unwrap(), 0); |
| 216 | |
| 217 | // check the full write buffer |
| 218 | let mut expected: Vec<u8> = Vec::with_capacity(10); |
| 219 | expected.extend_from_slice(&bytes_to_write_0); |
| 220 | expected.extend_from_slice(&bytes_to_write_1); |
| 221 | expected.extend_from_slice(&bytes_to_write_2[0..1]); |
| 222 | assert_eq!(t.write_buffer_as_ref(), &expected[..]); |
| 223 | } |
| 224 | |
| 225 | #[test] |
| 226 | fn must_empty_read_buffer() { |
| 227 | let mut t = TBufferTransport::with_capacity(1, 0); |
| 228 | |
| 229 | let bytes_to_read: [u8; 1] = [0x01]; |
| 230 | let result = t.set_readable_bytes(&bytes_to_read); |
| 231 | assert_eq!(result, 1); |
| 232 | assert_eq!(&t.read_buffer(), &bytes_to_read); |
| 233 | |
| 234 | t.empty_read_buffer(); |
| 235 | assert_eq!(t.read_buffer().len(), 0); |
| 236 | } |
| 237 | |
| 238 | #[test] |
| 239 | fn must_allow_readable_bytes_to_be_set_after_read_buffer_emptied() { |
| 240 | let mut t = TBufferTransport::with_capacity(1, 0); |
| 241 | |
| 242 | let bytes_to_read_0: [u8; 1] = [0x01]; |
| 243 | let result = t.set_readable_bytes(&bytes_to_read_0); |
| 244 | assert_eq!(result, 1); |
| 245 | assert_eq!(&t.read_buffer(), &bytes_to_read_0); |
| 246 | |
| 247 | t.empty_read_buffer(); |
| 248 | assert_eq!(t.read_buffer().len(), 0); |
| 249 | |
| 250 | let bytes_to_read_1: [u8; 1] = [0x02]; |
| 251 | let result = t.set_readable_bytes(&bytes_to_read_1); |
| 252 | assert_eq!(result, 1); |
| 253 | assert_eq!(&t.read_buffer(), &bytes_to_read_1); |
| 254 | } |
| 255 | |
| 256 | #[test] |
| 257 | fn must_accept_multiple_reads_until_all_bytes_read() { |
| 258 | let mut t = TBufferTransport::with_capacity(10, 0); |
| 259 | |
| 260 | let readable_bytes: [u8; 10] = [0xFF, 0xEE, 0xDD, 0xCC, 0xBB, 0x00, 0x1A, 0x2B, 0x3C, 0x4D]; |
| 261 | |
| 262 | // check that we're able to set the bytes to be read |
| 263 | let result = t.set_readable_bytes(&readable_bytes); |
| 264 | assert_eq!(result, 10); |
| 265 | assert_eq!(&t.read_buffer(), &readable_bytes); |
| 266 | |
| 267 | // first read |
| 268 | let mut read_buf_0 = vec![0; 5]; |
| 269 | let read_result = t.read(&mut read_buf_0); |
| 270 | assert_eq!(read_result.unwrap(), 5); |
| 271 | assert_eq!(read_buf_0.as_slice(), &(readable_bytes[0..5])); |
| 272 | |
| 273 | // second read |
| 274 | let mut read_buf_1 = vec![0; 4]; |
| 275 | let read_result = t.read(&mut read_buf_1); |
| 276 | assert_eq!(read_result.unwrap(), 4); |
| 277 | assert_eq!(read_buf_1.as_slice(), &(readable_bytes[5..9])); |
| 278 | |
| 279 | // third read (only 1 byte remains to be read) |
| 280 | let mut read_buf_2 = vec![0; 3]; |
| 281 | let read_result = t.read(&mut read_buf_2); |
| 282 | assert_eq!(read_result.unwrap(), 1); |
| 283 | read_buf_2.truncate(1); // FIXME: does the caller have to do this? |
| 284 | assert_eq!(read_buf_2.as_slice(), &(readable_bytes[9..])); |
| 285 | |
| 286 | // fourth read (nothing should be readable) |
| 287 | let mut read_buf_3 = vec![0; 10]; |
| 288 | let read_result = t.read(&mut read_buf_3); |
| 289 | assert_eq!(read_result.unwrap(), 0); |
| 290 | read_buf_3.truncate(0); |
| 291 | |
| 292 | // check that all the bytes we received match the original (again!) |
| 293 | let mut bytes_read = Vec::with_capacity(10); |
| 294 | bytes_read.extend_from_slice(&read_buf_0); |
| 295 | bytes_read.extend_from_slice(&read_buf_1); |
| 296 | bytes_read.extend_from_slice(&read_buf_2); |
| 297 | bytes_read.extend_from_slice(&read_buf_3); |
| 298 | assert_eq!(&bytes_read, &readable_bytes); |
| 299 | } |
| 300 | |
| 301 | #[test] |
| 302 | fn must_allow_reads_to_succeed_after_read_buffer_replenished() { |
| 303 | let mut t = TBufferTransport::with_capacity(3, 0); |
| 304 | |
| 305 | let readable_bytes_0: [u8; 3] = [0x02, 0xAB, 0x33]; |
| 306 | |
| 307 | // check that we're able to set the bytes to be read |
| 308 | let result = t.set_readable_bytes(&readable_bytes_0); |
| 309 | assert_eq!(result, 3); |
| 310 | assert_eq!(&t.read_buffer(), &readable_bytes_0); |
| 311 | |
| 312 | let mut read_buf = vec![0; 4]; |
| 313 | |
| 314 | // drain the read buffer |
| 315 | let read_result = t.read(&mut read_buf); |
| 316 | assert_eq!(read_result.unwrap(), 3); |
| 317 | assert_eq!(t.read_buffer(), &read_buf[0..3]); |
| 318 | |
| 319 | // check that a subsequent read fails |
| 320 | let read_result = t.read(&mut read_buf); |
| 321 | assert_eq!(read_result.unwrap(), 0); |
| 322 | |
| 323 | // we don't modify the read buffer on failure |
| 324 | let mut expected_bytes = Vec::with_capacity(4); |
| 325 | expected_bytes.extend_from_slice(&readable_bytes_0); |
| 326 | expected_bytes.push(0x00); |
| 327 | assert_eq!(&read_buf, &expected_bytes); |
| 328 | |
| 329 | // replenish the read buffer again |
| 330 | let readable_bytes_1: [u8; 2] = [0x91, 0xAA]; |
| 331 | |
| 332 | // check that we're able to set the bytes to be read |
| 333 | let result = t.set_readable_bytes(&readable_bytes_1); |
| 334 | assert_eq!(result, 2); |
| 335 | assert_eq!(&t.read_buffer(), &readable_bytes_1); |
| 336 | |
| 337 | // read again |
| 338 | let read_result = t.read(&mut read_buf); |
| 339 | assert_eq!(read_result.unwrap(), 2); |
| 340 | assert_eq!(t.read_buffer(), &read_buf[0..2]); |
| 341 | } |
| 342 | } |