blob: e9ed75653bc7607f94901e5fe05114ed2911000b [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
#include <thrift/thrift-config.h>
#include <thrift/concurrency/ThreadManager.h>
#include <thrift/concurrency/ThreadFactory.h>
#include <thrift/concurrency/Monitor.h>
#include <assert.h>
#include <deque>
#include <set>
#include <iostream>
#include <stdint.h>
namespace apache {
namespace thrift {
namespace concurrency {
namespace test {
using namespace apache::thrift::concurrency;
static std::deque<std::shared_ptr<Runnable> > m_expired;
static void expiredNotifier(std::shared_ptr<Runnable> runnable)
{
m_expired.push_back(runnable);
}
static void sleep_(int64_t millisec) {
Monitor _sleep;
Synchronized s(_sleep);
try {
_sleep.wait(millisec);
} catch (TimedOutException&) {
;
} catch (...) {
assert(0);
}
}
class ThreadManagerTests {
public:
class Task : public Runnable {
public:
Task(Monitor& monitor, size_t& count, int64_t timeout)
: _monitor(monitor), _count(count), _timeout(timeout), _startTime(0), _endTime(0), _done(false) {}
void run() {
_startTime = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::steady_clock::now().time_since_epoch()).count();
sleep_(_timeout);
_endTime = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::steady_clock::now().time_since_epoch()).count();
_done = true;
{
Synchronized s(_monitor);
// std::cout << "Thread " << _count << " completed " << std::endl;
_count--;
if (_count % 10000 == 0) {
_monitor.notify();
}
}
}
Monitor& _monitor;
size_t& _count;
int64_t _timeout;
int64_t _startTime;
int64_t _endTime;
bool _done;
Monitor _sleep;
};
/**
* Dispatch count tasks, each of which blocks for timeout milliseconds then
* completes. Verify that all tasks completed and that thread manager cleans
* up properly on delete.
*/
bool loadTest(size_t count = 100, int64_t timeout = 100LL, size_t workerCount = 4) {
Monitor monitor;
size_t activeCount = count;
shared_ptr<ThreadManager> threadManager = ThreadManager::newSimpleThreadManager(workerCount);
shared_ptr<ThreadFactory> threadFactory
= shared_ptr<ThreadFactory>(new ThreadFactory(false));
threadManager->threadFactory(threadFactory);
threadManager->start();
std::set<shared_ptr<ThreadManagerTests::Task> > tasks;
for (size_t ix = 0; ix < count; ix++) {
tasks.insert(shared_ptr<ThreadManagerTests::Task>(
new ThreadManagerTests::Task(monitor, activeCount, timeout)));
}
int64_t time00 = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::steady_clock::now().time_since_epoch()).count();
for (std::set<shared_ptr<ThreadManagerTests::Task> >::iterator ix = tasks.begin();
ix != tasks.end();
ix++) {
threadManager->add(*ix);
}
std::cout << "\t\t\t\tloaded " << count << " tasks to execute" << std::endl;
{
Synchronized s(monitor);
while (activeCount > 0) {
std::cout << "\t\t\t\tactiveCount = " << activeCount << std::endl;
monitor.wait();
}
}
int64_t time01 = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::steady_clock::now().time_since_epoch()).count();
int64_t firstTime = 9223372036854775807LL;
int64_t lastTime = 0;
double averageTime = 0;
int64_t minTime = 9223372036854775807LL;
int64_t maxTime = 0;
for (std::set<shared_ptr<ThreadManagerTests::Task> >::iterator ix = tasks.begin();
ix != tasks.end();
ix++) {
shared_ptr<ThreadManagerTests::Task> task = *ix;
int64_t delta = task->_endTime - task->_startTime;
assert(delta > 0);
if (task->_startTime < firstTime) {
firstTime = task->_startTime;
}
if (task->_endTime > lastTime) {
lastTime = task->_endTime;
}
if (delta < minTime) {
minTime = delta;
}
if (delta > maxTime) {
maxTime = delta;
}
averageTime += delta;
}
averageTime /= count;
std::cout << "\t\t\tfirst start: " << firstTime << " Last end: " << lastTime
<< " min: " << minTime << "ms max: " << maxTime << "ms average: " << averageTime
<< "ms" << std::endl;
bool success = (time01 - time00) >= ((int64_t)count * timeout) / (int64_t)workerCount;
std::cout << "\t\t\t" << (success ? "Success" : "Failure")
<< "! expected time: " << ((int64_t)count * timeout) / (int64_t)workerCount << "ms elapsed time: " << time01 - time00
<< "ms" << std::endl;
return success;
}
class BlockTask : public Runnable {
public:
BlockTask(Monitor& entryMonitor, Monitor& blockMonitor, bool& blocked, Monitor& doneMonitor, size_t& count)
: _entryMonitor(entryMonitor), _entered(false), _blockMonitor(blockMonitor), _blocked(blocked), _doneMonitor(doneMonitor), _count(count) {}
void run() {
{
Synchronized s(_entryMonitor);
_entered = true;
_entryMonitor.notify();
}
{
Synchronized s(_blockMonitor);
while (_blocked) {
_blockMonitor.wait();
}
}
{
Synchronized s(_doneMonitor);
if (--_count == 0) {
_doneMonitor.notify();
}
}
}
Monitor& _entryMonitor;
bool _entered;
Monitor& _blockMonitor;
bool& _blocked;
Monitor& _doneMonitor;
size_t& _count;
};
/**
* Block test. Create pendingTaskCountMax tasks. Verify that we block adding the
* pendingTaskCountMax + 1th task. Verify that we unblock when a task completes */
bool blockTest(int64_t timeout = 100LL, size_t workerCount = 2) {
(void)timeout;
bool success = false;
try {
Monitor entryMonitor; // not used by this test
Monitor blockMonitor;
bool blocked[] = {true, true, true};
Monitor doneMonitor;
size_t pendingTaskMaxCount = workerCount;
size_t activeCounts[] = {workerCount, pendingTaskMaxCount, 1};
shared_ptr<ThreadManager> threadManager
= ThreadManager::newSimpleThreadManager(workerCount, pendingTaskMaxCount);
shared_ptr<ThreadFactory> threadFactory
= shared_ptr<ThreadFactory>(new ThreadFactory());
threadManager->threadFactory(threadFactory);
threadManager->start();
std::vector<shared_ptr<ThreadManagerTests::BlockTask> > tasks;
tasks.reserve(workerCount + pendingTaskMaxCount);
for (size_t ix = 0; ix < workerCount; ix++) {
tasks.push_back(shared_ptr<ThreadManagerTests::BlockTask>(
new ThreadManagerTests::BlockTask(entryMonitor, blockMonitor, blocked[0], doneMonitor, activeCounts[0])));
}
for (size_t ix = 0; ix < pendingTaskMaxCount; ix++) {
tasks.push_back(shared_ptr<ThreadManagerTests::BlockTask>(
new ThreadManagerTests::BlockTask(entryMonitor, blockMonitor, blocked[1], doneMonitor, activeCounts[1])));
}
for (std::vector<shared_ptr<ThreadManagerTests::BlockTask> >::iterator ix = tasks.begin();
ix != tasks.end();
ix++) {
threadManager->add(*ix);
}
if (!(success = (threadManager->totalTaskCount() == pendingTaskMaxCount + workerCount))) {
throw TException("Unexpected pending task count");
}
shared_ptr<ThreadManagerTests::BlockTask> extraTask(
new ThreadManagerTests::BlockTask(entryMonitor, blockMonitor, blocked[2], doneMonitor, activeCounts[2]));
try {
threadManager->add(extraTask, 1);
throw TException("Unexpected success adding task in excess of pending task count");
} catch (TooManyPendingTasksException&) {
throw TException("Should have timed out adding task in excess of pending task count");
} catch (TimedOutException&) {
// Expected result
}
try {
threadManager->add(extraTask, -1);
throw TException("Unexpected success adding task in excess of pending task count");
} catch (TimedOutException&) {
throw TException("Unexpected timeout adding task in excess of pending task count");
} catch (TooManyPendingTasksException&) {
// Expected result
}
std::cout << "\t\t\t"
<< "Pending tasks " << threadManager->pendingTaskCount() << std::endl;
{
Synchronized s(blockMonitor);
blocked[0] = false;
blockMonitor.notifyAll();
}
{
Synchronized s(doneMonitor);
while (activeCounts[0] != 0) {
doneMonitor.wait();
}
}
std::cout << "\t\t\t"
<< "Pending tasks " << threadManager->pendingTaskCount() << std::endl;
try {
threadManager->add(extraTask, 1);
} catch (TimedOutException&) {
std::cout << "\t\t\t"
<< "add timed out unexpectedly" << std::endl;
throw TException("Unexpected timeout adding task");
} catch (TooManyPendingTasksException&) {
std::cout << "\t\t\t"
<< "add encountered too many pending exepctions" << std::endl;
throw TException("Unexpected timeout adding task");
}
// Wake up tasks that were pending before and wait for them to complete
{
Synchronized s(blockMonitor);
blocked[1] = false;
blockMonitor.notifyAll();
}
{
Synchronized s(doneMonitor);
while (activeCounts[1] != 0) {
doneMonitor.wait();
}
}
// Wake up the extra task and wait for it to complete
{
Synchronized s(blockMonitor);
blocked[2] = false;
blockMonitor.notifyAll();
}
{
Synchronized s(doneMonitor);
while (activeCounts[2] != 0) {
doneMonitor.wait();
}
}
threadManager->stop();
if (!(success = (threadManager->totalTaskCount() == 0))) {
throw TException("Unexpected total task count");
}
} catch (TException& e) {
std::cout << "ERROR: " << e.what() << std::endl;
}
std::cout << "\t\t\t" << (success ? "Success" : "Failure") << std::endl;
return success;
}
bool apiTest() {
// prove currentTime has milliseconds granularity since many other things depend on it
int64_t a = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::steady_clock::now().time_since_epoch()).count();
sleep_(100);
int64_t b = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::steady_clock::now().time_since_epoch()).count();
if (b - a < 50 || b - a > 150) {
std::cerr << "\t\t\texpected 100ms gap, found " << (b-a) << "ms gap instead." << std::endl;
return false;
}
return apiTestWithThreadFactory(shared_ptr<ThreadFactory>(new ThreadFactory()));
}
bool apiTestWithThreadFactory(shared_ptr<ThreadFactory> threadFactory)
{
shared_ptr<ThreadManager> threadManager = ThreadManager::newSimpleThreadManager(1);
threadManager->threadFactory(threadFactory);
std::cout << "\t\t\t\tstarting.. " << std::endl;
threadManager->start();
threadManager->setExpireCallback(expiredNotifier); // std::bind(&ThreadManagerTests::expiredNotifier, this));
#define EXPECT(FUNC, COUNT) { size_t c = FUNC; if (c != COUNT) { std::cerr << "expected " #FUNC" to be " #COUNT ", but was " << c << std::endl; return false; } }
EXPECT(threadManager->workerCount(), 1);
EXPECT(threadManager->idleWorkerCount(), 1);
EXPECT(threadManager->pendingTaskCount(), 0);
std::cout << "\t\t\t\tadd 2nd worker.. " << std::endl;
threadManager->addWorker();
EXPECT(threadManager->workerCount(), 2);
EXPECT(threadManager->idleWorkerCount(), 2);
EXPECT(threadManager->pendingTaskCount(), 0);
std::cout << "\t\t\t\tremove 2nd worker.. " << std::endl;
threadManager->removeWorker();
EXPECT(threadManager->workerCount(), 1);
EXPECT(threadManager->idleWorkerCount(), 1);
EXPECT(threadManager->pendingTaskCount(), 0);
std::cout << "\t\t\t\tremove 1st worker.. " << std::endl;
threadManager->removeWorker();
EXPECT(threadManager->workerCount(), 0);
EXPECT(threadManager->idleWorkerCount(), 0);
EXPECT(threadManager->pendingTaskCount(), 0);
std::cout << "\t\t\t\tadd blocking task.. " << std::endl;
// We're going to throw a blocking task into the mix
Monitor entryMonitor; // signaled when task is running
Monitor blockMonitor; // to be signaled to unblock the task
bool blocked(true); // set to false before notifying
Monitor doneMonitor; // signaled when count reaches zero
size_t activeCount = 1;
shared_ptr<ThreadManagerTests::BlockTask> blockingTask(
new ThreadManagerTests::BlockTask(entryMonitor, blockMonitor, blocked, doneMonitor, activeCount));
threadManager->add(blockingTask);
EXPECT(threadManager->workerCount(), 0);
EXPECT(threadManager->idleWorkerCount(), 0);
EXPECT(threadManager->pendingTaskCount(), 1);
std::cout << "\t\t\t\tadd other task.. " << std::endl;
shared_ptr<ThreadManagerTests::Task> otherTask(
new ThreadManagerTests::Task(doneMonitor, activeCount, 0));
threadManager->add(otherTask);
EXPECT(threadManager->workerCount(), 0);
EXPECT(threadManager->idleWorkerCount(), 0);
EXPECT(threadManager->pendingTaskCount(), 2);
std::cout << "\t\t\t\tremove blocking task specifically.. " << std::endl;
threadManager->remove(blockingTask);
EXPECT(threadManager->workerCount(), 0);
EXPECT(threadManager->idleWorkerCount(), 0);
EXPECT(threadManager->pendingTaskCount(), 1);
std::cout << "\t\t\t\tremove next pending task.." << std::endl;
shared_ptr<Runnable> nextTask = threadManager->removeNextPending();
if (nextTask != otherTask) {
std::cerr << "\t\t\t\t\texpected removeNextPending to return otherTask" << std::endl;
return false;
}
EXPECT(threadManager->workerCount(), 0);
EXPECT(threadManager->idleWorkerCount(), 0);
EXPECT(threadManager->pendingTaskCount(), 0);
std::cout << "\t\t\t\tremove next pending task (none left).." << std::endl;
nextTask = threadManager->removeNextPending();
if (nextTask) {
std::cerr << "\t\t\t\t\texpected removeNextPending to return an empty Runnable" << std::endl;
return false;
}
std::cout << "\t\t\t\tadd 2 expired tasks and 1 not.." << std::endl;
shared_ptr<ThreadManagerTests::Task> expiredTask(
new ThreadManagerTests::Task(doneMonitor, activeCount, 0));
threadManager->add(expiredTask, 0, 1);
threadManager->add(blockingTask); // add one that hasn't expired to make sure it gets skipped
threadManager->add(expiredTask, 0, 1); // add a second expired to ensure removeExpiredTasks removes both
sleep_(50); // make sure enough time elapses for it to expire - the shortest expiration time is 1 millisecond
EXPECT(threadManager->workerCount(), 0);
EXPECT(threadManager->idleWorkerCount(), 0);
EXPECT(threadManager->pendingTaskCount(), 3);
EXPECT(threadManager->expiredTaskCount(), 0);
std::cout << "\t\t\t\tremove expired tasks.." << std::endl;
if (!m_expired.empty()) {
std::cerr << "\t\t\t\t\texpected m_expired to be empty" << std::endl;
return false;
}
threadManager->removeExpiredTasks();
if (m_expired.size() != 2) {
std::cerr << "\t\t\t\t\texpected m_expired to be set" << std::endl;
return false;
}
if (m_expired.front() != expiredTask) {
std::cerr << "\t\t\t\t\texpected m_expired[0] to be the expired task" << std::endl;
return false;
}
m_expired.pop_front();
if (m_expired.front() != expiredTask) {
std::cerr << "\t\t\t\t\texpected m_expired[1] to be the expired task" << std::endl;
return false;
}
m_expired.clear();
threadManager->remove(blockingTask);
EXPECT(threadManager->workerCount(), 0);
EXPECT(threadManager->idleWorkerCount(), 0);
EXPECT(threadManager->pendingTaskCount(), 0);
EXPECT(threadManager->expiredTaskCount(), 2);
std::cout << "\t\t\t\tadd expired task (again).." << std::endl;
threadManager->add(expiredTask, 0, 1); // expires in 1ms
sleep_(50); // make sure enough time elapses for it to expire - the shortest expiration time is 1ms
std::cout << "\t\t\t\tadd worker to consume expired task.." << std::endl;
threadManager->addWorker();
sleep_(100); // make sure it has time to spin up and expire the task
if (m_expired.empty()) {
std::cerr << "\t\t\t\t\texpected m_expired to be set" << std::endl;
return false;
}
if (m_expired.front() != expiredTask) {
std::cerr << "\t\t\t\t\texpected m_expired to be the expired task" << std::endl;
return false;
}
m_expired.clear();
EXPECT(threadManager->workerCount(), 1);
EXPECT(threadManager->idleWorkerCount(), 1);
EXPECT(threadManager->pendingTaskCount(), 0);
EXPECT(threadManager->expiredTaskCount(), 3);
std::cout << "\t\t\t\ttry to remove too many workers" << std::endl;
try {
threadManager->removeWorker(2);
std::cerr << "\t\t\t\t\texpected InvalidArgumentException" << std::endl;
return false;
} catch (const InvalidArgumentException&) {
/* expected */
}
std::cout << "\t\t\t\tremove worker.. " << std::endl;
threadManager->removeWorker();
EXPECT(threadManager->workerCount(), 0);
EXPECT(threadManager->idleWorkerCount(), 0);
EXPECT(threadManager->pendingTaskCount(), 0);
EXPECT(threadManager->expiredTaskCount(), 3);
std::cout << "\t\t\t\tadd blocking task.. " << std::endl;
threadManager->add(blockingTask);
EXPECT(threadManager->workerCount(), 0);
EXPECT(threadManager->idleWorkerCount(), 0);
EXPECT(threadManager->pendingTaskCount(), 1);
std::cout << "\t\t\t\tadd worker.. " << std::endl;
threadManager->addWorker();
{
Synchronized s(entryMonitor);
while (!blockingTask->_entered) {
entryMonitor.wait();
}
}
EXPECT(threadManager->workerCount(), 1);
EXPECT(threadManager->idleWorkerCount(), 0);
EXPECT(threadManager->pendingTaskCount(), 0);
std::cout << "\t\t\t\tunblock task and remove worker.. " << std::endl;
{
Synchronized s(blockMonitor);
blocked = false;
blockMonitor.notifyAll();
}
threadManager->removeWorker();
EXPECT(threadManager->workerCount(), 0);
EXPECT(threadManager->idleWorkerCount(), 0);
EXPECT(threadManager->pendingTaskCount(), 0);
std::cout << "\t\t\t\tcleanup.. " << std::endl;
blockingTask.reset();
threadManager.reset();
return true;
}
};
}
}
}
} // apache::thrift::concurrency
using namespace apache::thrift::concurrency::test;