blob: ff673975efac95926a59c252fe81c03b23b46ea2 [file] [log] [blame]
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
* Contains some contributions under the Thrift Software License.
* Please see doc/old-thrift-license.txt in the Thrift distribution for
* details.
*/
using System;
using System.Text;
using Thrift.Transport;
using System.Collections;
using System.IO;
using System.Collections.Generic;
namespace Thrift.Protocol
{
public class TCompactProtocol : TProtocol
{
private static TStruct ANONYMOUS_STRUCT = new TStruct("");
private static TField TSTOP = new TField("", TType.Stop, (short)0);
private static byte[] ttypeToCompactType = new byte[16];
private const byte PROTOCOL_ID = 0x82;
private const byte VERSION = 1;
private const byte VERSION_MASK = 0x1f; // 0001 1111
private const byte TYPE_MASK = 0xE0; // 1110 0000
private const byte TYPE_BITS = 0x07; // 0000 0111
private const int TYPE_SHIFT_AMOUNT = 5;
/// <summary>
/// All of the on-wire type codes.
/// </summary>
private static class Types
{
public const byte STOP = 0x00;
public const byte BOOLEAN_TRUE = 0x01;
public const byte BOOLEAN_FALSE = 0x02;
public const byte BYTE = 0x03;
public const byte I16 = 0x04;
public const byte I32 = 0x05;
public const byte I64 = 0x06;
public const byte DOUBLE = 0x07;
public const byte BINARY = 0x08;
public const byte LIST = 0x09;
public const byte SET = 0x0A;
public const byte MAP = 0x0B;
public const byte STRUCT = 0x0C;
}
/// <summary>
/// Used to keep track of the last field for the current and previous structs,
/// so we can do the delta stuff.
/// </summary>
private Stack<short> lastField_ = new Stack<short>(15);
private short lastFieldId_ = 0;
/// <summary>
/// If we encounter a boolean field begin, save the TField here so it can
/// have the value incorporated.
/// </summary>
private Nullable<TField> booleanField_;
/// <summary>
/// If we Read a field header, and it's a boolean field, save the boolean
/// value here so that ReadBool can use it.
/// </summary>
private Nullable<Boolean> boolValue_;
#region CompactProtocol Factory
public class Factory : TProtocolFactory
{
public Factory() { }
public TProtocol GetProtocol(TTransport trans)
{
return new TCompactProtocol(trans);
}
}
#endregion
public TCompactProtocol(TTransport trans)
: base(trans)
{
ttypeToCompactType[(int)TType.Stop] = Types.STOP;
ttypeToCompactType[(int)TType.Bool] = Types.BOOLEAN_TRUE;
ttypeToCompactType[(int)TType.Byte] = Types.BYTE;
ttypeToCompactType[(int)TType.I16] = Types.I16;
ttypeToCompactType[(int)TType.I32] = Types.I32;
ttypeToCompactType[(int)TType.I64] = Types.I64;
ttypeToCompactType[(int)TType.Double] = Types.DOUBLE;
ttypeToCompactType[(int)TType.String] = Types.BINARY;
ttypeToCompactType[(int)TType.List] = Types.LIST;
ttypeToCompactType[(int)TType.Set] = Types.SET;
ttypeToCompactType[(int)TType.Map] = Types.MAP;
ttypeToCompactType[(int)TType.Struct] = Types.STRUCT;
}
public void reset()
{
lastField_.Clear();
lastFieldId_ = 0;
}
#region Write Methods
/// <summary>
/// Writes a byte without any possibility of all that field header nonsense.
/// Used internally by other writing methods that know they need to Write a byte.
/// </summary>
private byte[] byteDirectBuffer = new byte[1];
private void WriteByteDirect(byte b)
{
byteDirectBuffer[0] = b;
trans.Write(byteDirectBuffer);
}
/// <summary>
/// Writes a byte without any possibility of all that field header nonsense.
/// </summary>
private void WriteByteDirect(int n)
{
WriteByteDirect((byte)n);
}
/// <summary>
/// Write an i32 as a varint. Results in 1-5 bytes on the wire.
/// TODO: make a permanent buffer like WriteVarint64?
/// </summary>
byte[] i32buf = new byte[5];
private void WriteVarint32(uint n)
{
int idx = 0;
while (true)
{
if ((n & ~0x7F) == 0)
{
i32buf[idx++] = (byte)n;
// WriteByteDirect((byte)n);
break;
// return;
}
else
{
i32buf[idx++] = (byte)((n & 0x7F) | 0x80);
// WriteByteDirect((byte)((n & 0x7F) | 0x80));
n >>= 7;
}
}
trans.Write(i32buf, 0, idx);
}
/// <summary>
/// Write a message header to the wire. Compact Protocol messages contain the
/// protocol version so we can migrate forwards in the future if need be.
/// </summary>
public override void WriteMessageBegin(TMessage message)
{
WriteByteDirect(PROTOCOL_ID);
WriteByteDirect((byte)((VERSION & VERSION_MASK) | ((((uint)message.Type) << TYPE_SHIFT_AMOUNT) & TYPE_MASK)));
WriteVarint32((uint)message.SeqID);
WriteString(message.Name);
}
/// <summary>
/// Write a struct begin. This doesn't actually put anything on the wire. We
/// use it as an opportunity to put special placeholder markers on the field
/// stack so we can get the field id deltas correct.
/// </summary>
public override void WriteStructBegin(TStruct strct)
{
lastField_.Push(lastFieldId_);
lastFieldId_ = 0;
}
/// <summary>
/// Write a struct end. This doesn't actually put anything on the wire. We use
/// this as an opportunity to pop the last field from the current struct off
/// of the field stack.
/// </summary>
public override void WriteStructEnd()
{
lastFieldId_ = lastField_.Pop();
}
/// <summary>
/// Write a field header containing the field id and field type. If the
/// difference between the current field id and the last one is small (&lt; 15),
/// then the field id will be encoded in the 4 MSB as a delta. Otherwise, the
/// field id will follow the type header as a zigzag varint.
/// </summary>
public override void WriteFieldBegin(TField field)
{
if (field.Type == TType.Bool)
{
// we want to possibly include the value, so we'll wait.
booleanField_ = field;
}
else
{
WriteFieldBeginInternal(field, 0xFF);
}
}
/// <summary>
/// The workhorse of WriteFieldBegin. It has the option of doing a
/// 'type override' of the type header. This is used specifically in the
/// boolean field case.
/// </summary>
private void WriteFieldBeginInternal(TField field, byte typeOverride)
{
// short lastField = lastField_.Pop();
// if there's a type override, use that.
byte typeToWrite = typeOverride == 0xFF ? getCompactType(field.Type) : typeOverride;
// check if we can use delta encoding for the field id
if (field.ID > lastFieldId_ && field.ID - lastFieldId_ <= 15)
{
// Write them together
WriteByteDirect((field.ID - lastFieldId_) << 4 | typeToWrite);
}
else
{
// Write them separate
WriteByteDirect(typeToWrite);
WriteI16(field.ID);
}
lastFieldId_ = field.ID;
// lastField_.push(field.id);
}
/// <summary>
/// Write the STOP symbol so we know there are no more fields in this struct.
/// </summary>
public override void WriteFieldStop()
{
WriteByteDirect(Types.STOP);
}
/// <summary>
/// Write a map header. If the map is empty, omit the key and value type
/// headers, as we don't need any additional information to skip it.
/// </summary>
public override void WriteMapBegin(TMap map)
{
if (map.Count == 0)
{
WriteByteDirect(0);
}
else
{
WriteVarint32((uint)map.Count);
WriteByteDirect(getCompactType(map.KeyType) << 4 | getCompactType(map.ValueType));
}
}
/// <summary>
/// Write a list header.
/// </summary>
public override void WriteListBegin(TList list)
{
WriteCollectionBegin(list.ElementType, list.Count);
}
/// <summary>
/// Write a set header.
/// </summary>
public override void WriteSetBegin(TSet set)
{
WriteCollectionBegin(set.ElementType, set.Count);
}
/// <summary>
/// Write a boolean value. Potentially, this could be a boolean field, in
/// which case the field header info isn't written yet. If so, decide what the
/// right type header is for the value and then Write the field header.
/// Otherwise, Write a single byte.
/// </summary>
public override void WriteBool(Boolean b)
{
if (booleanField_ != null)
{
// we haven't written the field header yet
WriteFieldBeginInternal(booleanField_.Value, b ? Types.BOOLEAN_TRUE : Types.BOOLEAN_FALSE);
booleanField_ = null;
}
else
{
// we're not part of a field, so just Write the value.
WriteByteDirect(b ? Types.BOOLEAN_TRUE : Types.BOOLEAN_FALSE);
}
}
/// <summary>
/// Write a byte. Nothing to see here!
/// </summary>
public override void WriteByte(sbyte b)
{
WriteByteDirect((byte)b);
}
/// <summary>
/// Write an I16 as a zigzag varint.
/// </summary>
public override void WriteI16(short i16)
{
WriteVarint32(intToZigZag(i16));
}
/// <summary>
/// Write an i32 as a zigzag varint.
/// </summary>
public override void WriteI32(int i32)
{
WriteVarint32(intToZigZag(i32));
}
/// <summary>
/// Write an i64 as a zigzag varint.
/// </summary>
public override void WriteI64(long i64)
{
WriteVarint64(longToZigzag(i64));
}
/// <summary>
/// Write a double to the wire as 8 bytes.
/// </summary>
public override void WriteDouble(double dub)
{
byte[] data = new byte[] { 0, 0, 0, 0, 0, 0, 0, 0 };
fixedLongToBytes(BitConverter.DoubleToInt64Bits(dub), data, 0);
trans.Write(data);
}
/// <summary>
/// Write a string to the wire with a varint size preceding.
/// </summary>
public override void WriteString(string str)
{
byte[] bytes = UTF8Encoding.UTF8.GetBytes(str);
WriteBinary(bytes, 0, bytes.Length);
}
/// <summary>
/// Write a byte array, using a varint for the size.
/// </summary>
public override void WriteBinary(byte[] bin)
{
WriteBinary(bin, 0, bin.Length);
}
private void WriteBinary(byte[] buf, int offset, int length)
{
WriteVarint32((uint)length);
trans.Write(buf, offset, length);
}
//
// These methods are called by structs, but don't actually have any wire
// output or purpose.
//
public override void WriteMessageEnd() { }
public override void WriteMapEnd() { }
public override void WriteListEnd() { }
public override void WriteSetEnd() { }
public override void WriteFieldEnd() { }
//
// Internal writing methods
//
/// <summary>
/// Abstract method for writing the start of lists and sets. List and sets on
/// the wire differ only by the type indicator.
/// </summary>
protected void WriteCollectionBegin(TType elemType, int size)
{
if (size <= 14)
{
WriteByteDirect(size << 4 | getCompactType(elemType));
}
else
{
WriteByteDirect(0xf0 | getCompactType(elemType));
WriteVarint32((uint)size);
}
}
/// <summary>
/// Write an i64 as a varint. Results in 1-10 bytes on the wire.
/// </summary>
byte[] varint64out = new byte[10];
private void WriteVarint64(ulong n)
{
int idx = 0;
while (true)
{
if ((n & ~(ulong)0x7FL) == 0)
{
varint64out[idx++] = (byte)n;
break;
}
else
{
varint64out[idx++] = ((byte)((n & 0x7F) | 0x80));
n >>= 7;
}
}
trans.Write(varint64out, 0, idx);
}
/// <summary>
/// Convert l into a zigzag long. This allows negative numbers to be
/// represented compactly as a varint.
/// </summary>
private ulong longToZigzag(long n)
{
return (ulong)(n << 1) ^ (ulong)(n >> 63);
}
/// <summary>
/// Convert n into a zigzag int. This allows negative numbers to be
/// represented compactly as a varint.
/// </summary>
private uint intToZigZag(int n)
{
return (uint)(n << 1) ^ (uint)(n >> 31);
}
/// <summary>
/// Convert a long into little-endian bytes in buf starting at off and going
/// until off+7.
/// </summary>
private void fixedLongToBytes(long n, byte[] buf, int off)
{
buf[off + 0] = (byte)(n & 0xff);
buf[off + 1] = (byte)((n >> 8) & 0xff);
buf[off + 2] = (byte)((n >> 16) & 0xff);
buf[off + 3] = (byte)((n >> 24) & 0xff);
buf[off + 4] = (byte)((n >> 32) & 0xff);
buf[off + 5] = (byte)((n >> 40) & 0xff);
buf[off + 6] = (byte)((n >> 48) & 0xff);
buf[off + 7] = (byte)((n >> 56) & 0xff);
}
#endregion
#region ReadMethods
/// <summary>
/// Read a message header.
/// </summary>
public override TMessage ReadMessageBegin()
{
byte protocolId = (byte)ReadByte();
if (protocolId != PROTOCOL_ID)
{
throw new TProtocolException("Expected protocol id " + PROTOCOL_ID.ToString("X") + " but got " + protocolId.ToString("X"));
}
byte versionAndType = (byte)ReadByte();
byte version = (byte)(versionAndType & VERSION_MASK);
if (version != VERSION)
{
throw new TProtocolException("Expected version " + VERSION + " but got " + version);
}
byte type = (byte)((versionAndType >> TYPE_SHIFT_AMOUNT) & TYPE_BITS);
int seqid = (int)ReadVarint32();
string messageName = ReadString();
return new TMessage(messageName, (TMessageType)type, seqid);
}
/// <summary>
/// Read a struct begin. There's nothing on the wire for this, but it is our
/// opportunity to push a new struct begin marker onto the field stack.
/// </summary>
public override TStruct ReadStructBegin()
{
lastField_.Push(lastFieldId_);
lastFieldId_ = 0;
return ANONYMOUS_STRUCT;
}
/// <summary>
/// Doesn't actually consume any wire data, just removes the last field for
/// this struct from the field stack.
/// </summary>
public override void ReadStructEnd()
{
// consume the last field we Read off the wire.
lastFieldId_ = lastField_.Pop();
}
/// <summary>
/// Read a field header off the wire.
/// </summary>
public override TField ReadFieldBegin()
{
byte type = (byte)ReadByte();
// if it's a stop, then we can return immediately, as the struct is over.
if (type == Types.STOP)
{
return TSTOP;
}
short fieldId;
// mask off the 4 MSB of the type header. it could contain a field id delta.
short modifier = (short)((type & 0xf0) >> 4);
if (modifier == 0)
{
// not a delta. look ahead for the zigzag varint field id.
fieldId = ReadI16();
}
else
{
// has a delta. add the delta to the last Read field id.
fieldId = (short)(lastFieldId_ + modifier);
}
TField field = new TField("", getTType((byte)(type & 0x0f)), fieldId);
// if this happens to be a boolean field, the value is encoded in the type
if (isBoolType(type))
{
// save the boolean value in a special instance variable.
boolValue_ = (byte)(type & 0x0f) == Types.BOOLEAN_TRUE ? true : false;
}
// push the new field onto the field stack so we can keep the deltas going.
lastFieldId_ = field.ID;
return field;
}
/// <summary>
/// Read a map header off the wire. If the size is zero, skip Reading the key
/// and value type. This means that 0-length maps will yield TMaps without the
/// "correct" types.
/// </summary>
public override TMap ReadMapBegin()
{
int size = (int)ReadVarint32();
byte keyAndValueType = size == 0 ? (byte)0 : (byte)ReadByte();
return new TMap(getTType((byte)(keyAndValueType >> 4)), getTType((byte)(keyAndValueType & 0xf)), size);
}
/// <summary>
/// Read a list header off the wire. If the list size is 0-14, the size will
/// be packed into the element type header. If it's a longer list, the 4 MSB
/// of the element type header will be 0xF, and a varint will follow with the
/// true size.
/// </summary>
public override TList ReadListBegin()
{
byte size_and_type = (byte)ReadByte();
int size = (size_and_type >> 4) & 0x0f;
if (size == 15)
{
size = (int)ReadVarint32();
}
TType type = getTType(size_and_type);
return new TList(type, size);
}
/// <summary>
/// Read a set header off the wire. If the set size is 0-14, the size will
/// be packed into the element type header. If it's a longer set, the 4 MSB
/// of the element type header will be 0xF, and a varint will follow with the
/// true size.
/// </summary>
public override TSet ReadSetBegin()
{
return new TSet(ReadListBegin());
}
/// <summary>
/// Read a boolean off the wire. If this is a boolean field, the value should
/// already have been Read during ReadFieldBegin, so we'll just consume the
/// pre-stored value. Otherwise, Read a byte.
/// </summary>
public override Boolean ReadBool()
{
if (boolValue_ != null)
{
bool result = boolValue_.Value;
boolValue_ = null;
return result;
}
return ReadByte() == Types.BOOLEAN_TRUE;
}
byte[] byteRawBuf = new byte[1];
/// <summary>
/// Read a single byte off the wire. Nothing interesting here.
/// </summary>
public override sbyte ReadByte()
{
trans.ReadAll(byteRawBuf, 0, 1);
return (sbyte)byteRawBuf[0];
}
/// <summary>
/// Read an i16 from the wire as a zigzag varint.
/// </summary>
public override short ReadI16()
{
return (short)zigzagToInt(ReadVarint32());
}
/// <summary>
/// Read an i32 from the wire as a zigzag varint.
/// </summary>
public override int ReadI32()
{
return zigzagToInt(ReadVarint32());
}
/// <summary>
/// Read an i64 from the wire as a zigzag varint.
/// </summary>
public override long ReadI64()
{
return zigzagToLong(ReadVarint64());
}
/// <summary>
/// No magic here - just Read a double off the wire.
/// </summary>
public override double ReadDouble()
{
byte[] longBits = new byte[8];
trans.ReadAll(longBits, 0, 8);
return BitConverter.Int64BitsToDouble(bytesToLong(longBits));
}
/// <summary>
/// Reads a byte[] (via ReadBinary), and then UTF-8 decodes it.
/// </summary>
public override string ReadString()
{
int length = (int)ReadVarint32();
if (length == 0)
{
return "";
}
return Encoding.UTF8.GetString(ReadBinary(length));
}
/// <summary>
/// Read a byte[] from the wire.
/// </summary>
public override byte[] ReadBinary()
{
int length = (int)ReadVarint32();
if (length == 0) return new byte[0];
byte[] buf = new byte[length];
trans.ReadAll(buf, 0, length);
return buf;
}
/// <summary>
/// Read a byte[] of a known length from the wire.
/// </summary>
private byte[] ReadBinary(int length)
{
if (length == 0) return new byte[0];
byte[] buf = new byte[length];
trans.ReadAll(buf, 0, length);
return buf;
}
//
// These methods are here for the struct to call, but don't have any wire
// encoding.
//
public override void ReadMessageEnd() { }
public override void ReadFieldEnd() { }
public override void ReadMapEnd() { }
public override void ReadListEnd() { }
public override void ReadSetEnd() { }
//
// Internal Reading methods
//
/// <summary>
/// Read an i32 from the wire as a varint. The MSB of each byte is set
/// if there is another byte to follow. This can Read up to 5 bytes.
/// </summary>
private uint ReadVarint32()
{
uint result = 0;
int shift = 0;
while (true)
{
byte b = (byte)ReadByte();
result |= (uint)(b & 0x7f) << shift;
if ((b & 0x80) != 0x80) break;
shift += 7;
}
return result;
}
/// <summary>
/// Read an i64 from the wire as a proper varint. The MSB of each byte is set
/// if there is another byte to follow. This can Read up to 10 bytes.
/// </summary>
private ulong ReadVarint64()
{
int shift = 0;
ulong result = 0;
while (true)
{
byte b = (byte)ReadByte();
result |= (ulong)(b & 0x7f) << shift;
if ((b & 0x80) != 0x80) break;
shift += 7;
}
return result;
}
#endregion
//
// encoding helpers
//
/// <summary>
/// Convert from zigzag int to int.
/// </summary>
private int zigzagToInt(uint n)
{
return (int)(n >> 1) ^ (-(int)(n & 1));
}
/// <summary>
/// Convert from zigzag long to long.
/// </summary>
private long zigzagToLong(ulong n)
{
return (long)(n >> 1) ^ (-(long)(n & 1));
}
/// <summary>
/// Note that it's important that the mask bytes are long literals,
/// otherwise they'll default to ints, and when you shift an int left 56 bits,
/// you just get a messed up int.
/// </summary>
private long bytesToLong(byte[] bytes)
{
return
((bytes[7] & 0xffL) << 56) |
((bytes[6] & 0xffL) << 48) |
((bytes[5] & 0xffL) << 40) |
((bytes[4] & 0xffL) << 32) |
((bytes[3] & 0xffL) << 24) |
((bytes[2] & 0xffL) << 16) |
((bytes[1] & 0xffL) << 8) |
((bytes[0] & 0xffL));
}
//
// type testing and converting
//
private Boolean isBoolType(byte b)
{
int lowerNibble = b & 0x0f;
return lowerNibble == Types.BOOLEAN_TRUE || lowerNibble == Types.BOOLEAN_FALSE;
}
/// <summary>
/// Given a TCompactProtocol.Types constant, convert it to its corresponding
/// TType value.
/// </summary>
private TType getTType(byte type)
{
switch ((byte)(type & 0x0f))
{
case Types.STOP:
return TType.Stop;
case Types.BOOLEAN_FALSE:
case Types.BOOLEAN_TRUE:
return TType.Bool;
case Types.BYTE:
return TType.Byte;
case Types.I16:
return TType.I16;
case Types.I32:
return TType.I32;
case Types.I64:
return TType.I64;
case Types.DOUBLE:
return TType.Double;
case Types.BINARY:
return TType.String;
case Types.LIST:
return TType.List;
case Types.SET:
return TType.Set;
case Types.MAP:
return TType.Map;
case Types.STRUCT:
return TType.Struct;
default:
throw new TProtocolException("don't know what type: " + (byte)(type & 0x0f));
}
}
/// <summary>
/// Given a TType value, find the appropriate TCompactProtocol.Types constant.
/// </summary>
private byte getCompactType(TType ttype)
{
return ttypeToCompactType[(int)ttype];
}
}
}