| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| #ifndef _GNU_SOURCE |
| #define _GNU_SOURCE // needed for getopt_long |
| #endif |
| |
| #include <stdlib.h> |
| #include <time.h> |
| #include <unistd.h> |
| #include <getopt.h> |
| #include <signal.h> |
| #include <sstream> |
| #include <tr1/functional> |
| |
| #include <boost/mpl/list.hpp> |
| #include <boost/shared_array.hpp> |
| #include <boost/random.hpp> |
| #include <boost/type_traits.hpp> |
| #include <boost/test/unit_test.hpp> |
| |
| #include <transport/TBufferTransports.h> |
| #include <transport/TFDTransport.h> |
| #include <transport/TFileTransport.h> |
| #include <transport/TZlibTransport.h> |
| #include <transport/TSocket.h> |
| |
| using namespace apache::thrift::transport; |
| |
| static boost::mt19937 rng; |
| static const char* tmp_dir = "/tmp"; |
| |
| void initrand(unsigned int seed) { |
| rng.seed(seed); |
| } |
| |
| class SizeGenerator { |
| public: |
| virtual ~SizeGenerator() {} |
| virtual uint32_t nextSize() = 0; |
| virtual std::string describe() const = 0; |
| }; |
| |
| class ConstantSizeGenerator : public SizeGenerator { |
| public: |
| ConstantSizeGenerator(uint32_t value) : value_(value) {} |
| uint32_t nextSize() { return value_; } |
| std::string describe() const { |
| std::ostringstream desc; |
| desc << value_; |
| return desc.str(); |
| } |
| |
| private: |
| uint32_t value_; |
| }; |
| |
| class RandomSizeGenerator : public SizeGenerator { |
| public: |
| RandomSizeGenerator(uint32_t min, uint32_t max) : |
| generator_(rng, boost::uniform_int<int>(min, max)) {} |
| |
| uint32_t nextSize() { return generator_(); } |
| |
| std::string describe() const { |
| std::ostringstream desc; |
| desc << "rand(" << getMin() << ", " << getMax() << ")"; |
| return desc.str(); |
| } |
| |
| uint32_t getMin() const { return generator_.distribution().min(); } |
| uint32_t getMax() const { return generator_.distribution().max(); } |
| |
| private: |
| boost::variate_generator< boost::mt19937&, boost::uniform_int<int> > |
| generator_; |
| }; |
| |
| /** |
| * This class exists solely to make the TEST_RW() macro easier to use. |
| * - it can be constructed implicitly from an integer |
| * - it can contain either a ConstantSizeGenerator or a RandomSizeGenerator |
| * (TEST_RW can't take a SizeGenerator pointer or reference, since it needs |
| * to make a copy of the generator to bind it to the test function.) |
| */ |
| class GenericSizeGenerator : public SizeGenerator { |
| public: |
| GenericSizeGenerator(uint32_t value) : |
| generator_(new ConstantSizeGenerator(value)) {} |
| GenericSizeGenerator(uint32_t min, uint32_t max) : |
| generator_(new RandomSizeGenerator(min, max)) {} |
| |
| uint32_t nextSize() { return generator_->nextSize(); } |
| std::string describe() const { return generator_->describe(); } |
| |
| private: |
| boost::shared_ptr<SizeGenerator> generator_; |
| }; |
| |
| /************************************************************************** |
| * Classes to set up coupled transports |
| **************************************************************************/ |
| |
| /** |
| * Helper class to represent a coupled pair of transports. |
| * |
| * Data written to the out transport can be read from the in transport. |
| * |
| * This is used as the base class for the various coupled transport |
| * implementations. It shouldn't be instantiated directly. |
| */ |
| template <class Transport_> |
| class CoupledTransports { |
| public: |
| typedef Transport_ TransportType; |
| |
| CoupledTransports() : in(), out() {} |
| |
| boost::shared_ptr<Transport_> in; |
| boost::shared_ptr<Transport_> out; |
| |
| private: |
| CoupledTransports(const CoupledTransports&); |
| CoupledTransports &operator=(const CoupledTransports&); |
| }; |
| |
| /** |
| * Coupled TMemoryBuffers |
| */ |
| class CoupledMemoryBuffers : public CoupledTransports<TMemoryBuffer> { |
| public: |
| CoupledMemoryBuffers() : |
| buf(new TMemoryBuffer) { |
| in = buf; |
| out = buf; |
| } |
| |
| boost::shared_ptr<TMemoryBuffer> buf; |
| }; |
| |
| /** |
| * Helper template class for creating coupled transports that wrap |
| * another transport. |
| */ |
| template <class WrapperTransport_, class InnerCoupledTransports_> |
| class CoupledWrapperTransportsT : public CoupledTransports<WrapperTransport_> { |
| public: |
| CoupledWrapperTransportsT() { |
| if (inner_.in) { |
| this->in.reset(new WrapperTransport_(inner_.in)); |
| } |
| if (inner_.out) { |
| this->out.reset(new WrapperTransport_(inner_.out)); |
| } |
| } |
| |
| InnerCoupledTransports_ inner_; |
| }; |
| |
| /** |
| * Coupled TBufferedTransports. |
| */ |
| template <class InnerTransport_> |
| class CoupledBufferedTransportsT : |
| public CoupledWrapperTransportsT<TBufferedTransport, InnerTransport_> { |
| }; |
| |
| typedef CoupledBufferedTransportsT<CoupledMemoryBuffers> |
| CoupledBufferedTransports; |
| |
| /** |
| * Coupled TFramedTransports. |
| */ |
| template <class InnerTransport_> |
| class CoupledFramedTransportsT : |
| public CoupledWrapperTransportsT<TFramedTransport, InnerTransport_> { |
| }; |
| |
| typedef CoupledFramedTransportsT<CoupledMemoryBuffers> |
| CoupledFramedTransports; |
| |
| /** |
| * Coupled TZlibTransports. |
| */ |
| template <class InnerTransport_> |
| class CoupledZlibTransportsT : |
| public CoupledWrapperTransportsT<TZlibTransport, InnerTransport_> { |
| }; |
| |
| typedef CoupledZlibTransportsT<CoupledMemoryBuffers> |
| CoupledZlibTransports; |
| |
| /** |
| * Coupled TFDTransports. |
| */ |
| class CoupledFDTransports : public CoupledTransports<TFDTransport> { |
| public: |
| CoupledFDTransports() { |
| int pipes[2]; |
| |
| if (pipe(pipes) != 0) { |
| return; |
| } |
| |
| in.reset(new TFDTransport(pipes[0], TFDTransport::CLOSE_ON_DESTROY)); |
| out.reset(new TFDTransport(pipes[1], TFDTransport::CLOSE_ON_DESTROY)); |
| } |
| }; |
| |
| /** |
| * Coupled TSockets |
| */ |
| class CoupledSocketTransports : public CoupledTransports<TSocket> { |
| public: |
| CoupledSocketTransports() { |
| int sockets[2]; |
| if (socketpair(PF_UNIX, SOCK_STREAM, 0, sockets) != 0) { |
| return; |
| } |
| |
| in.reset(new TSocket(sockets[0])); |
| out.reset(new TSocket(sockets[1])); |
| } |
| }; |
| |
| /** |
| * Coupled TFileTransports |
| */ |
| class CoupledFileTransports : public CoupledTransports<TFileTransport> { |
| public: |
| CoupledFileTransports() { |
| // Create a temporary file to use |
| size_t filename_len = strlen(tmp_dir) + 32; |
| filename = new char[filename_len]; |
| snprintf(filename, filename_len, |
| "%s/thrift.transport_test.XXXXXX", tmp_dir); |
| fd = mkstemp(filename); |
| if (fd < 0) { |
| return; |
| } |
| |
| in.reset(new TFileTransport(filename, true)); |
| out.reset(new TFileTransport(filename)); |
| } |
| |
| ~CoupledFileTransports() { |
| if (fd >= 0) { |
| close(fd); |
| unlink(filename); |
| } |
| delete[] filename; |
| } |
| |
| char* filename; |
| int fd; |
| }; |
| |
| /** |
| * Wrapper around another CoupledTransports implementation that exposes the |
| * transports as TTransport pointers. |
| * |
| * This is used since accessing a transport via a "TTransport*" exercises a |
| * different code path than using the base pointer class. As part of the |
| * template code changes, most transport methods are no longer virtual. |
| */ |
| template <class CoupledTransports_> |
| class CoupledTTransports : public CoupledTransports<TTransport> { |
| public: |
| CoupledTTransports() : transports() { |
| in = transports.in; |
| out = transports.out; |
| } |
| |
| CoupledTransports_ transports; |
| }; |
| |
| /** |
| * Wrapper around another CoupledTransports implementation that exposes the |
| * transports as TBufferBase pointers. |
| * |
| * This can only be instantiated with a transport type that is a subclass of |
| * TBufferBase. |
| */ |
| template <class CoupledTransports_> |
| class CoupledBufferBases : public CoupledTransports<TBufferBase> { |
| public: |
| CoupledBufferBases() : transports() { |
| in = transports.in; |
| out = transports.out; |
| } |
| |
| CoupledTransports_ transports; |
| }; |
| |
| /************************************************************************** |
| * Alarm handling code for use in tests that check the transport blocking |
| * semantics. |
| * |
| * If the transport ends up blocking, we don't want to hang forever. We use |
| * SIGALRM to fire schedule signal to wake up and try to write data so the |
| * transport will unblock. |
| * |
| * It isn't really the safest thing in the world to be mucking around with |
| * complicated global data structures in a signal handler. It should probably |
| * be okay though, since we know the main thread should always be blocked in a |
| * read() request when the signal handler is running. |
| **************************************************************************/ |
| |
| struct TriggerInfo { |
| TriggerInfo(int seconds, const boost::shared_ptr<TTransport>& transport, |
| uint32_t writeLength) : |
| timeoutSeconds(seconds), |
| transport(transport), |
| writeLength(writeLength), |
| next(NULL) {} |
| |
| int timeoutSeconds; |
| boost::shared_ptr<TTransport> transport; |
| uint32_t writeLength; |
| TriggerInfo* next; |
| }; |
| |
| TriggerInfo* triggerInfo; |
| unsigned int numTriggersFired; |
| |
| void set_alarm(); |
| |
| void alarm_handler(int signum) { |
| (void) signum; |
| // The alarm timed out, which almost certainly means we're stuck |
| // on a transport that is incorrectly blocked. |
| ++numTriggersFired; |
| |
| // Note: we print messages to stdout instead of stderr, since |
| // tools/test/runner only records stdout messages in the failure messages for |
| // boost tests. (boost prints its test info to stdout.) |
| printf("Timeout alarm expired; attempting to unblock transport\n"); |
| if (triggerInfo == NULL) { |
| printf(" trigger stack is empty!\n"); |
| } |
| |
| // Pop off the first TriggerInfo. |
| // If there is another one, schedule an alarm for it. |
| TriggerInfo* info = triggerInfo; |
| triggerInfo = info->next; |
| set_alarm(); |
| |
| // Write some data to the transport to hopefully unblock it. |
| uint8_t* buf = new uint8_t[info->writeLength]; |
| memset(buf, 'b', info->writeLength); |
| boost::scoped_array<uint8_t> array(buf); |
| info->transport->write(buf, info->writeLength); |
| info->transport->flush(); |
| |
| delete info; |
| } |
| |
| void set_alarm() { |
| if (triggerInfo == NULL) { |
| // clear any alarm |
| alarm(0); |
| return; |
| } |
| |
| struct sigaction action; |
| memset(&action, 0, sizeof(action)); |
| action.sa_handler = alarm_handler; |
| action.sa_flags = SA_RESETHAND; |
| sigemptyset(&action.sa_mask); |
| sigaction(SIGALRM, &action, NULL); |
| |
| alarm(triggerInfo->timeoutSeconds); |
| } |
| |
| /** |
| * Add a trigger to be scheduled "seconds" seconds after the |
| * last currently scheduled trigger. |
| * |
| * (Note that this is not "seconds" from now. That might be more logical, but |
| * would require slightly more complicated sorting, rather than just appending |
| * to the end.) |
| */ |
| void add_trigger(unsigned int seconds, |
| const boost::shared_ptr<TTransport> &transport, |
| uint32_t write_len) { |
| TriggerInfo* info = new TriggerInfo(seconds, transport, write_len); |
| |
| if (triggerInfo == NULL) { |
| // This is the first trigger. |
| // Set triggerInfo, and schedule the alarm |
| triggerInfo = info; |
| set_alarm(); |
| } else { |
| // Add this trigger to the end of the list |
| TriggerInfo* prev = triggerInfo; |
| while (prev->next) { |
| prev = prev->next; |
| } |
| |
| prev->next = info; |
| } |
| } |
| |
| void clear_triggers() { |
| TriggerInfo *info = triggerInfo; |
| alarm(0); |
| triggerInfo = NULL; |
| numTriggersFired = 0; |
| |
| while (info != NULL) { |
| TriggerInfo* next = info->next; |
| delete info; |
| info = next; |
| } |
| } |
| |
| void set_trigger(unsigned int seconds, |
| const boost::shared_ptr<TTransport> &transport, |
| uint32_t write_len) { |
| clear_triggers(); |
| add_trigger(seconds, transport, write_len); |
| } |
| |
| /************************************************************************** |
| * Test functions |
| **************************************************************************/ |
| |
| /** |
| * Test interleaved write and read calls. |
| * |
| * Generates a buffer totalSize bytes long, then writes it to the transport, |
| * and verifies the written data can be read back correctly. |
| * |
| * Mode of operation: |
| * - call wChunkGenerator to figure out how large of a chunk to write |
| * - call wSizeGenerator to get the size for individual write() calls, |
| * and do this repeatedly until the entire chunk is written. |
| * - call rChunkGenerator to figure out how large of a chunk to read |
| * - call rSizeGenerator to get the size for individual read() calls, |
| * and do this repeatedly until the entire chunk is read. |
| * - repeat until the full buffer is written and read back, |
| * then compare the data read back against the original buffer |
| * |
| * |
| * - If any of the size generators return 0, this means to use the maximum |
| * possible size. |
| * |
| * - If maxOutstanding is non-zero, write chunk sizes will be chosen such that |
| * there are never more than maxOutstanding bytes waiting to be read back. |
| */ |
| template <class CoupledTransports> |
| void test_rw(uint32_t totalSize, |
| SizeGenerator& wSizeGenerator, |
| SizeGenerator& rSizeGenerator, |
| SizeGenerator& wChunkGenerator, |
| SizeGenerator& rChunkGenerator, |
| uint32_t maxOutstanding) { |
| CoupledTransports transports; |
| BOOST_REQUIRE(transports.in != NULL); |
| BOOST_REQUIRE(transports.out != NULL); |
| |
| boost::shared_array<uint8_t> wbuf = |
| boost::shared_array<uint8_t>(new uint8_t[totalSize]); |
| boost::shared_array<uint8_t> rbuf = |
| boost::shared_array<uint8_t>(new uint8_t[totalSize]); |
| |
| // store some data in wbuf |
| for (uint32_t n = 0; n < totalSize; ++n) { |
| wbuf[n] = (n & 0xff); |
| } |
| // clear rbuf |
| memset(rbuf.get(), 0, totalSize); |
| |
| uint32_t total_written = 0; |
| uint32_t total_read = 0; |
| while (total_read < totalSize) { |
| // Determine how large a chunk of data to write |
| uint32_t wchunk_size = wChunkGenerator.nextSize(); |
| if (wchunk_size == 0 || wchunk_size > totalSize - total_written) { |
| wchunk_size = totalSize - total_written; |
| } |
| |
| // Make sure (total_written - total_read) + wchunk_size |
| // is less than maxOutstanding |
| if (maxOutstanding > 0 && |
| wchunk_size > maxOutstanding - (total_written - total_read)) { |
| wchunk_size = maxOutstanding - (total_written - total_read); |
| } |
| |
| // Write the chunk |
| uint32_t chunk_written = 0; |
| while (chunk_written < wchunk_size) { |
| uint32_t write_size = wSizeGenerator.nextSize(); |
| if (write_size == 0 || write_size > wchunk_size - chunk_written) { |
| write_size = wchunk_size - chunk_written; |
| } |
| |
| transports.out->write(wbuf.get() + total_written, write_size); |
| chunk_written += write_size; |
| total_written += write_size; |
| } |
| |
| // Flush the data, so it will be available in the read transport |
| // Don't flush if wchunk_size is 0. (This should only happen if |
| // total_written == totalSize already, and we're only reading now.) |
| if (wchunk_size > 0) { |
| transports.out->flush(); |
| } |
| |
| // Determine how large a chunk of data to read back |
| uint32_t rchunk_size = rChunkGenerator.nextSize(); |
| if (rchunk_size == 0 || rchunk_size > total_written - total_read) { |
| rchunk_size = total_written - total_read; |
| } |
| |
| // Read the chunk |
| uint32_t chunk_read = 0; |
| while (chunk_read < rchunk_size) { |
| uint32_t read_size = rSizeGenerator.nextSize(); |
| if (read_size == 0 || read_size > rchunk_size - chunk_read) { |
| read_size = rchunk_size - chunk_read; |
| } |
| |
| int bytes_read = -1; |
| try { |
| bytes_read = transports.in->read(rbuf.get() + total_read, read_size); |
| } catch (TTransportException& e) { |
| BOOST_FAIL("read(pos=" << total_read << ", size=" << read_size << |
| ") threw exception \"" << e.what() << |
| "\"; written so far: " << total_written << " / " << |
| totalSize << " bytes"); |
| } |
| |
| BOOST_REQUIRE_MESSAGE(bytes_read > 0, |
| "read(pos=" << total_read << ", size=" << |
| read_size << ") returned " << bytes_read << |
| "; written so far: " << total_written << " / " << |
| totalSize << " bytes"); |
| chunk_read += bytes_read; |
| total_read += bytes_read; |
| } |
| } |
| |
| // make sure the data read back is identical to the data written |
| BOOST_CHECK_EQUAL(memcmp(rbuf.get(), wbuf.get(), totalSize), 0); |
| } |
| |
| template <class CoupledTransports> |
| void test_read_part_available() { |
| CoupledTransports transports; |
| BOOST_REQUIRE(transports.in != NULL); |
| BOOST_REQUIRE(transports.out != NULL); |
| |
| uint8_t write_buf[16]; |
| uint8_t read_buf[16]; |
| memset(write_buf, 'a', sizeof(write_buf)); |
| |
| // Attemping to read 10 bytes when only 9 are available should return 9 |
| // immediately. |
| transports.out->write(write_buf, 9); |
| transports.out->flush(); |
| set_trigger(3, transports.out, 1); |
| uint32_t bytes_read = transports.in->read(read_buf, 10); |
| BOOST_CHECK_EQUAL(numTriggersFired, (unsigned int) 0); |
| BOOST_CHECK_EQUAL(bytes_read, (uint32_t) 9); |
| |
| clear_triggers(); |
| } |
| |
| template <class CoupledTransports> |
| void test_read_partial_midframe() { |
| CoupledTransports transports; |
| BOOST_REQUIRE(transports.in != NULL); |
| BOOST_REQUIRE(transports.out != NULL); |
| |
| uint8_t write_buf[16]; |
| uint8_t read_buf[16]; |
| memset(write_buf, 'a', sizeof(write_buf)); |
| |
| // Attempt to read 10 bytes, when only 9 are available, but after we have |
| // already read part of the data that is available. This exercises a |
| // different code path for several of the transports. |
| // |
| // For transports that add their own framing (e.g., TFramedTransport and |
| // TFileTransport), the two flush calls break up the data in to a 10 byte |
| // frame and a 3 byte frame. The first read then puts us partway through the |
| // first frame, and then we attempt to read past the end of that frame, and |
| // through the next frame, too. |
| // |
| // For buffered transports that perform read-ahead (e.g., |
| // TBufferedTransport), the read-ahead will most likely see all 13 bytes |
| // written on the first read. The next read will then attempt to read past |
| // the end of the read-ahead buffer. |
| // |
| // Flush 10 bytes, then 3 bytes. This creates 2 separate frames for |
| // transports that track framing internally. |
| transports.out->write(write_buf, 10); |
| transports.out->flush(); |
| transports.out->write(write_buf, 3); |
| transports.out->flush(); |
| |
| // Now read 4 bytes, so that we are partway through the written data. |
| uint32_t bytes_read = transports.in->read(read_buf, 4); |
| BOOST_CHECK_EQUAL(bytes_read, (uint32_t) 4); |
| |
| // Now attempt to read 10 bytes. Only 9 more are available. |
| // |
| // We should be able to get all 9 bytes, but it might take multiple read |
| // calls, since it is valid for read() to return fewer bytes than requested. |
| // (Most transports do immediately return 9 bytes, but the framing transports |
| // tend to only return to the end of the current frame, which is 6 bytes in |
| // this case.) |
| uint32_t total_read = 0; |
| while (total_read < 9) { |
| set_trigger(3, transports.out, 1); |
| bytes_read = transports.in->read(read_buf, 10); |
| BOOST_REQUIRE_EQUAL(numTriggersFired, (unsigned int) 0); |
| BOOST_REQUIRE_GT(bytes_read, (uint32_t) 0); |
| total_read += bytes_read; |
| BOOST_REQUIRE_LE(total_read, (uint32_t) 9); |
| } |
| |
| BOOST_CHECK_EQUAL(total_read, (uint32_t) 9); |
| |
| clear_triggers(); |
| } |
| |
| template <class CoupledTransports> |
| void test_borrow_part_available() { |
| CoupledTransports transports; |
| BOOST_REQUIRE(transports.in != NULL); |
| BOOST_REQUIRE(transports.out != NULL); |
| |
| uint8_t write_buf[16]; |
| uint8_t read_buf[16]; |
| memset(write_buf, 'a', sizeof(write_buf)); |
| |
| // Attemping to borrow 10 bytes when only 9 are available should return NULL |
| // immediately. |
| transports.out->write(write_buf, 9); |
| transports.out->flush(); |
| set_trigger(3, transports.out, 1); |
| uint32_t borrow_len = 10; |
| const uint8_t* borrowed_buf = transports.in->borrow(read_buf, &borrow_len); |
| BOOST_CHECK_EQUAL(numTriggersFired, (unsigned int) 0); |
| BOOST_CHECK(borrowed_buf == NULL); |
| |
| clear_triggers(); |
| } |
| |
| template <class CoupledTransports> |
| void test_read_none_available() { |
| CoupledTransports transports; |
| BOOST_REQUIRE(transports.in != NULL); |
| BOOST_REQUIRE(transports.out != NULL); |
| |
| uint8_t write_buf[16]; |
| uint8_t read_buf[16]; |
| memset(write_buf, 'a', sizeof(write_buf)); |
| |
| // Attempting to read when no data is available should either block until |
| // some data is available, or fail immediately. (e.g., TSocket blocks, |
| // TMemoryBuffer just fails.) |
| // |
| // If the transport blocks, it should succeed once some data is available, |
| // even if less than the amount requested becomes available. |
| set_trigger(1, transports.out, 2); |
| add_trigger(1, transports.out, 8); |
| uint32_t bytes_read = transports.in->read(read_buf, 10); |
| if (bytes_read == 0) { |
| BOOST_CHECK_EQUAL(numTriggersFired, (unsigned int) 0); |
| clear_triggers(); |
| } else { |
| BOOST_CHECK_EQUAL(numTriggersFired, (unsigned int) 1); |
| BOOST_CHECK_EQUAL(bytes_read, (uint32_t) 2); |
| } |
| |
| clear_triggers(); |
| } |
| |
| template <class CoupledTransports> |
| void test_borrow_none_available() { |
| CoupledTransports transports; |
| BOOST_REQUIRE(transports.in != NULL); |
| BOOST_REQUIRE(transports.out != NULL); |
| |
| uint8_t write_buf[16]; |
| memset(write_buf, 'a', sizeof(write_buf)); |
| |
| // Attempting to borrow when no data is available should fail immediately |
| set_trigger(1, transports.out, 10); |
| uint32_t borrow_len = 10; |
| const uint8_t* borrowed_buf = transports.in->borrow(NULL, &borrow_len); |
| BOOST_CHECK(borrowed_buf == NULL); |
| BOOST_CHECK_EQUAL(numTriggersFired, (unsigned int) 0); |
| |
| clear_triggers(); |
| } |
| |
| /************************************************************************** |
| * Test case generation |
| * |
| * Pretty ugly and annoying. This would be much easier if we the unit test |
| * framework didn't force each test to be a separate function. |
| * - Writing a completely separate function definition for each of these would |
| * result in a lot of repetitive boilerplate code. |
| * - Combining many tests into a single function makes it more difficult to |
| * tell precisely which tests failed. It also means you can't get a progress |
| * update after each test, and the tests are already fairly slow. |
| * - Similar registration could be acheived with BOOST_TEST_CASE_TEMPLATE, |
| * but it requires a lot of awkward MPL code, and results in useless test |
| * case names. (The names are generated from std::type_info::name(), which |
| * is compiler-dependent. gcc returns mangled names.) |
| **************************************************************************/ |
| |
| #define ADD_TEST_RW(CoupledTransports, totalSize, ...) \ |
| addTestRW< CoupledTransports >(BOOST_STRINGIZE(CoupledTransports), \ |
| totalSize, ## __VA_ARGS__); |
| |
| #define TEST_RW(CoupledTransports, totalSize, ...) \ |
| do { \ |
| /* Add the test as specified, to test the non-virtual function calls */ \ |
| ADD_TEST_RW(CoupledTransports, totalSize, ## __VA_ARGS__); \ |
| /* \ |
| * Also test using the transport as a TTransport*, to test \ |
| * the read_virt()/write_virt() calls \ |
| */ \ |
| ADD_TEST_RW(CoupledTTransports<CoupledTransports>, \ |
| totalSize, ## __VA_ARGS__); \ |
| /* Test wrapping the transport with TBufferedTransport */ \ |
| ADD_TEST_RW(CoupledBufferedTransportsT<CoupledTransports>, \ |
| totalSize, ## __VA_ARGS__); \ |
| /* Test wrapping the transport with TFramedTransports */ \ |
| ADD_TEST_RW(CoupledFramedTransportsT<CoupledTransports>, \ |
| totalSize, ## __VA_ARGS__); \ |
| /* Test wrapping the transport with TZlibTransport */ \ |
| ADD_TEST_RW(CoupledZlibTransportsT<CoupledTransports>, \ |
| totalSize, ## __VA_ARGS__); \ |
| } while (0) |
| |
| #define ADD_TEST_BLOCKING(CoupledTransports) \ |
| addTestBlocking< CoupledTransports >(BOOST_STRINGIZE(CoupledTransports)); |
| |
| #define TEST_BLOCKING_BEHAVIOR(CoupledTransports) \ |
| ADD_TEST_BLOCKING(CoupledTransports); \ |
| ADD_TEST_BLOCKING(CoupledTTransports<CoupledTransports>); \ |
| ADD_TEST_BLOCKING(CoupledBufferedTransportsT<CoupledTransports>); \ |
| ADD_TEST_BLOCKING(CoupledFramedTransportsT<CoupledTransports>); \ |
| ADD_TEST_BLOCKING(CoupledZlibTransportsT<CoupledTransports>); |
| |
| class TransportTestGen { |
| public: |
| TransportTestGen(boost::unit_test::test_suite* suite, |
| float sizeMultiplier) : |
| suite_(suite), |
| sizeMultiplier_(sizeMultiplier) {} |
| |
| void generate() { |
| GenericSizeGenerator rand4k(1, 4096); |
| |
| /* |
| * We do the basically the same set of tests for each transport type, |
| * although we tweak the parameters in some places. |
| */ |
| |
| // TMemoryBuffer tests |
| TEST_RW(CoupledMemoryBuffers, 1024*1024, 0, 0); |
| TEST_RW(CoupledMemoryBuffers, 1024*256, rand4k, rand4k); |
| TEST_RW(CoupledMemoryBuffers, 1024*256, 167, 163); |
| TEST_RW(CoupledMemoryBuffers, 1024*16, 1, 1); |
| |
| TEST_RW(CoupledMemoryBuffers, 1024*256, 0, 0, rand4k, rand4k); |
| TEST_RW(CoupledMemoryBuffers, 1024*256, rand4k, rand4k, rand4k, rand4k); |
| TEST_RW(CoupledMemoryBuffers, 1024*256, 167, 163, rand4k, rand4k); |
| TEST_RW(CoupledMemoryBuffers, 1024*16, 1, 1, rand4k, rand4k); |
| |
| TEST_BLOCKING_BEHAVIOR(CoupledMemoryBuffers); |
| |
| // TFDTransport tests |
| // Since CoupledFDTransports tests with a pipe, writes will block |
| // if there is too much outstanding unread data in the pipe. |
| uint32_t fd_max_outstanding = 4096; |
| TEST_RW(CoupledFDTransports, 1024*1024, 0, 0, |
| 0, 0, fd_max_outstanding); |
| TEST_RW(CoupledFDTransports, 1024*256, rand4k, rand4k, |
| 0, 0, fd_max_outstanding); |
| TEST_RW(CoupledFDTransports, 1024*256, 167, 163, |
| 0, 0, fd_max_outstanding); |
| TEST_RW(CoupledFDTransports, 1024*16, 1, 1, |
| 0, 0, fd_max_outstanding); |
| |
| TEST_RW(CoupledFDTransports, 1024*256, 0, 0, |
| rand4k, rand4k, fd_max_outstanding); |
| TEST_RW(CoupledFDTransports, 1024*256, rand4k, rand4k, |
| rand4k, rand4k, fd_max_outstanding); |
| TEST_RW(CoupledFDTransports, 1024*256, 167, 163, |
| rand4k, rand4k, fd_max_outstanding); |
| TEST_RW(CoupledFDTransports, 1024*16, 1, 1, |
| rand4k, rand4k, fd_max_outstanding); |
| |
| TEST_BLOCKING_BEHAVIOR(CoupledFDTransports); |
| |
| // TSocket tests |
| uint32_t socket_max_outstanding = 4096; |
| TEST_RW(CoupledSocketTransports, 1024*1024, 0, 0, |
| 0, 0, socket_max_outstanding); |
| TEST_RW(CoupledSocketTransports, 1024*256, rand4k, rand4k, |
| 0, 0, socket_max_outstanding); |
| TEST_RW(CoupledSocketTransports, 1024*256, 167, 163, |
| 0, 0, socket_max_outstanding); |
| // Doh. Apparently writing to a socket has some additional overhead for |
| // each send() call. If we have more than ~400 outstanding 1-byte write |
| // requests, additional send() calls start blocking. |
| TEST_RW(CoupledSocketTransports, 1024*16, 1, 1, |
| 0, 0, 400); |
| TEST_RW(CoupledSocketTransports, 1024*256, 0, 0, |
| rand4k, rand4k, socket_max_outstanding); |
| TEST_RW(CoupledSocketTransports, 1024*256, rand4k, rand4k, |
| rand4k, rand4k, socket_max_outstanding); |
| TEST_RW(CoupledSocketTransports, 1024*256, 167, 163, |
| rand4k, rand4k, socket_max_outstanding); |
| TEST_RW(CoupledSocketTransports, 1024*16, 1, 1, |
| rand4k, rand4k, 400); |
| |
| TEST_BLOCKING_BEHAVIOR(CoupledSocketTransports); |
| |
| // TFileTransport tests |
| // We use smaller buffer sizes here, since TFileTransport is fairly slow. |
| // |
| // TFileTransport can't write more than 16MB at once |
| uint32_t max_write_at_once = 1024*1024*16 - 4; |
| TEST_RW(CoupledFileTransports, 1024*1024, max_write_at_once, 0); |
| TEST_RW(CoupledFileTransports, 1024*128, rand4k, rand4k); |
| TEST_RW(CoupledFileTransports, 1024*128, 167, 163); |
| TEST_RW(CoupledFileTransports, 1024*2, 1, 1); |
| |
| TEST_RW(CoupledFileTransports, 1024*64, 0, 0, rand4k, rand4k); |
| TEST_RW(CoupledFileTransports, 1024*64, |
| rand4k, rand4k, rand4k, rand4k); |
| TEST_RW(CoupledFileTransports, 1024*64, 167, 163, rand4k, rand4k); |
| TEST_RW(CoupledFileTransports, 1024*2, 1, 1, rand4k, rand4k); |
| |
| TEST_BLOCKING_BEHAVIOR(CoupledFileTransports); |
| |
| // Add some tests that access TBufferedTransport and TFramedTransport |
| // via TTransport pointers and TBufferBase pointers. |
| ADD_TEST_RW(CoupledTTransports<CoupledBufferedTransports>, |
| 1024*1024, rand4k, rand4k, rand4k, rand4k); |
| ADD_TEST_RW(CoupledBufferBases<CoupledBufferedTransports>, |
| 1024*1024, rand4k, rand4k, rand4k, rand4k); |
| ADD_TEST_RW(CoupledTTransports<CoupledFramedTransports>, |
| 1024*1024, rand4k, rand4k, rand4k, rand4k); |
| ADD_TEST_RW(CoupledBufferBases<CoupledFramedTransports>, |
| 1024*1024, rand4k, rand4k, rand4k, rand4k); |
| |
| // Test using TZlibTransport via a TTransport pointer |
| ADD_TEST_RW(CoupledTTransports<CoupledZlibTransports>, |
| 1024*1024, rand4k, rand4k, rand4k, rand4k); |
| } |
| |
| private: |
| template <class CoupledTransports> |
| void addTestRW(const char* transport_name, uint32_t totalSize, |
| GenericSizeGenerator wSizeGen, GenericSizeGenerator rSizeGen, |
| GenericSizeGenerator wChunkSizeGen = 0, |
| GenericSizeGenerator rChunkSizeGen = 0, |
| uint32_t maxOutstanding = 0, |
| uint32_t expectedFailures = 0) { |
| // adjust totalSize by the specified sizeMultiplier_ first |
| totalSize = static_cast<uint32_t>(totalSize * sizeMultiplier_); |
| |
| std::ostringstream name; |
| name << transport_name << "::test_rw(" << totalSize << ", " << |
| wSizeGen.describe() << ", " << rSizeGen.describe() << ", " << |
| wChunkSizeGen.describe() << ", " << rChunkSizeGen.describe() << ", " << |
| maxOutstanding << ")"; |
| |
| boost::unit_test::callback0<> test_func = |
| std::tr1::bind(test_rw<CoupledTransports>, totalSize, |
| wSizeGen, rSizeGen, wChunkSizeGen, rChunkSizeGen, |
| maxOutstanding); |
| boost::unit_test::test_case* tc = |
| boost::unit_test::make_test_case(test_func, name.str()); |
| suite_->add(tc, expectedFailures); |
| } |
| |
| template <class CoupledTransports> |
| void addTestBlocking(const char* transportName, |
| uint32_t expectedFailures = 0) { |
| char name[1024]; |
| boost::unit_test::test_case* tc; |
| |
| snprintf(name, sizeof(name), "%s::test_read_part_available()", |
| transportName); |
| tc = boost::unit_test::make_test_case( |
| test_read_part_available<CoupledTransports>, name); |
| suite_->add(tc, expectedFailures); |
| |
| snprintf(name, sizeof(name), "%s::test_read_partial_midframe()", |
| transportName); |
| tc = boost::unit_test::make_test_case( |
| test_read_partial_midframe<CoupledTransports>, name); |
| suite_->add(tc, expectedFailures); |
| |
| snprintf(name, sizeof(name), "%s::test_read_none_available()", |
| transportName); |
| tc = boost::unit_test::make_test_case( |
| test_read_none_available<CoupledTransports>, name); |
| suite_->add(tc, expectedFailures); |
| |
| snprintf(name, sizeof(name), "%s::test_borrow_part_available()", |
| transportName); |
| tc = boost::unit_test::make_test_case( |
| test_borrow_part_available<CoupledTransports>, name); |
| suite_->add(tc, expectedFailures); |
| |
| snprintf(name, sizeof(name), "%s::test_borrow_none_available()", |
| transportName); |
| tc = boost::unit_test::make_test_case( |
| test_borrow_none_available<CoupledTransports>, name); |
| suite_->add(tc, expectedFailures); |
| } |
| |
| boost::unit_test::test_suite* suite_; |
| // sizeMultiplier_ is configurable via the command line, and allows the |
| // user to adjust between smaller buffers that can be tested quickly, |
| // or larger buffers that more thoroughly exercise the code, but take |
| // longer. |
| float sizeMultiplier_; |
| }; |
| |
| /************************************************************************** |
| * General Initialization |
| **************************************************************************/ |
| |
| void print_usage(FILE* f, const char* argv0) { |
| fprintf(f, "Usage: %s [boost_options] [options]\n", argv0); |
| fprintf(f, "Options:\n"); |
| fprintf(f, " --seed=<N>, -s <N>\n"); |
| fprintf(f, " --tmp-dir=DIR, -t DIR\n"); |
| fprintf(f, " --help\n"); |
| } |
| |
| struct Options { |
| int seed; |
| bool haveSeed; |
| float sizeMultiplier; |
| }; |
| |
| void parse_args(int argc, char* argv[], Options* options) { |
| bool have_seed = false; |
| options->sizeMultiplier = 1; |
| |
| struct option long_opts[] = { |
| { "help", false, NULL, 'h' }, |
| { "seed", true, NULL, 's' }, |
| { "tmp-dir", true, NULL, 't' }, |
| { "size-multiplier", true, NULL, 'x' }, |
| { NULL, 0, NULL, 0 } |
| }; |
| |
| while (true) { |
| optopt = 1; |
| int optchar = getopt_long(argc, argv, "hs:t:x:", long_opts, NULL); |
| if (optchar == -1) { |
| break; |
| } |
| |
| switch (optchar) { |
| case 't': |
| tmp_dir = optarg; |
| break; |
| case 's': { |
| char *endptr; |
| options->seed = strtol(optarg, &endptr, 0); |
| if (endptr == optarg || *endptr != '\0') { |
| fprintf(stderr, "invalid seed value \"%s\": must be an integer\n", |
| optarg); |
| exit(1); |
| } |
| have_seed = true; |
| break; |
| } |
| case 'h': |
| print_usage(stdout, argv[0]); |
| exit(0); |
| case 'x': { |
| char *endptr; |
| options->sizeMultiplier = strtof(optarg, &endptr); |
| if (endptr == optarg || *endptr != '\0') { |
| fprintf(stderr, "invalid size multiplier \"%s\": must be a number\n", |
| optarg); |
| exit(1); |
| } |
| if (options->sizeMultiplier < 0) { |
| fprintf(stderr, "invalid size multiplier \"%s\": " |
| "must be non-negative\n", optarg); |
| exit(1); |
| } |
| break; |
| } |
| case '?': |
| exit(1); |
| default: |
| // Only happens if someone adds another option to the optarg string, |
| // but doesn't update the switch statement to handle it. |
| fprintf(stderr, "unknown option \"-%c\"\n", optchar); |
| exit(1); |
| } |
| } |
| |
| if (!have_seed) { |
| // choose a seed now if the user didn't specify one |
| struct timeval tv; |
| struct timezone tz; |
| gettimeofday(&tv, &tz); |
| options->seed = tv.tv_sec ^ tv.tv_usec; |
| } |
| } |
| |
| boost::unit_test::test_suite* init_unit_test_suite(int argc, char* argv[]) { |
| // Parse arguments |
| Options options; |
| parse_args(argc, argv, &options); |
| |
| initrand(options.seed); |
| |
| boost::unit_test::test_suite* suite = |
| &boost::unit_test::framework::master_test_suite(); |
| suite->p_name.value = "TransportTest"; |
| TransportTestGen transport_test_generator(suite, options.sizeMultiplier); |
| transport_test_generator.generate(); |
| |
| return NULL; |
| } |