blob: 09bf6fd6804966ea2c71ef817d9bf5447adedc22 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/**
* Exercises various transports, combined with the buffered/framed wrappers.
*
* Originally ported from the C++ version, with Windows support code added.
*/
module transport_test;
import core.atomic;
import core.time : Duration;
import core.thread : Thread;
import std.conv : to;
import std.datetime;
import std.exception : enforce;
static import std.file;
import std.getopt;
import std.random : rndGen, uniform, unpredictableSeed;
import std.socket;
import std.stdio;
import std.string;
import std.typetuple;
import thrift.transport.base;
import thrift.transport.buffered;
import thrift.transport.framed;
import thrift.transport.file;
import thrift.transport.http;
import thrift.transport.memory;
import thrift.transport.socket;
import thrift.transport.zlib;
/*
* Size generation helpers – used to be able to run the same testing code
* with both constant and random total/chunk sizes.
*/
interface SizeGenerator {
size_t nextSize();
string toString();
}
class ConstantSizeGenerator : SizeGenerator {
this(size_t value) {
value_ = value;
}
override size_t nextSize() {
return value_;
}
override string toString() const {
return to!string(value_);
}
private:
size_t value_;
}
class RandomSizeGenerator : SizeGenerator {
this(size_t min, size_t max) {
min_ = min;
max_ = max;
}
override size_t nextSize() {
return uniform!"[]"(min_, max_);
}
override string toString() const {
return format("rand(%s, %s)", min_, max_);
}
size_t min() const @property {
return min_;
}
size_t max() const @property {
return max_;
}
private:
size_t min_;
size_t max_;
}
/*
* Classes to set up coupled transports
*/
/**
* Helper class to represent a coupled pair of transports.
*
* Data written to the output transport can be read from the input transport.
*
* This is used as the base class for the various coupled transport
* implementations. It shouldn't be used directly.
*/
class CoupledTransports(Transport) if (isTTransport!Transport) {
Transport input;
Transport output;
}
template isCoupledTransports(T) {
static if (is(T _ : CoupledTransports!U, U)) {
enum isCoupledTransports = true;
} else {
enum isCoupledTransports = false;
}
}
/**
* Helper template class for creating coupled transports that wrap
* another transport.
*/
class CoupledWrapperTransports(WrapperTransport, InnerCoupledTransports) if (
isTTransport!WrapperTransport && isCoupledTransports!InnerCoupledTransports
) : CoupledTransports!WrapperTransport {
this() {
inner_ = new InnerCoupledTransports();
if (inner_.input) {
input = new WrapperTransport(inner_.input);
}
if (inner_.output) {
output = new WrapperTransport(inner_.output);
}
}
~this() {
clear(inner_);
}
private:
InnerCoupledTransports inner_;
}
import thrift.internal.codegen : PApply;
alias PApply!(CoupledWrapperTransports, TBufferedTransport) CoupledBufferedTransports;
alias PApply!(CoupledWrapperTransports, TFramedTransport) CoupledFramedTransports;
alias PApply!(CoupledWrapperTransports, TZlibTransport) CoupledZlibTransports;
/**
* Coupled TMemoryBuffers.
*/
class CoupledMemoryBuffers : CoupledTransports!TMemoryBuffer {
this() {
buf = new TMemoryBuffer;
input = buf;
output = buf;
}
TMemoryBuffer buf;
}
/**
* Coupled TSockets.
*/
class CoupledSocketTransports : CoupledTransports!TSocket {
this() {
auto sockets = socketPair();
input = new TSocket(sockets[0]);
output = new TSocket(sockets[1]);
}
~this() {
input.close();
output.close();
}
}
/**
* Coupled TFileTransports
*/
class CoupledFileTransports : CoupledTransports!TTransport {
this() {
// We actually need the file name of the temp file here, so we can't just
// use the usual tempfile facilities.
do {
fileName_ = tmpDir ~ "/thrift.transport_test." ~ to!string(rndGen().front);
rndGen().popFront();
} while (std.file.exists(fileName_));
writefln("Using temp file: %s", fileName_);
auto writer = new TFileWriterTransport(fileName_);
writer.open();
output = writer;
// Wait until the file has been created.
writer.flush();
auto reader = new TFileReaderTransport(fileName_);
reader.open();
reader.readTimeout(dur!"msecs"(-1));
input = reader;
}
~this() {
input.close();
output.close();
std.file.remove(fileName_);
}
static string tmpDir;
private:
string fileName_;
}
/*
* Test functions
*/
/**
* Test interleaved write and read calls.
*
* Generates a buffer totalSize bytes long, then writes it to the transport,
* and verifies the written data can be read back correctly.
*
* Mode of operation:
* - call wChunkGenerator to figure out how large of a chunk to write
* - call wSizeGenerator to get the size for individual write() calls,
* and do this repeatedly until the entire chunk is written.
* - call rChunkGenerator to figure out how large of a chunk to read
* - call rSizeGenerator to get the size for individual read() calls,
* and do this repeatedly until the entire chunk is read.
* - repeat until the full buffer is written and read back,
* then compare the data read back against the original buffer
*
*
* - If any of the size generators return 0, this means to use the maximum
* possible size.
*
* - If maxOutstanding is non-zero, write chunk sizes will be chosen such that
* there are never more than maxOutstanding bytes waiting to be read back.
*/
void testReadWrite(CoupledTransports)(
size_t totalSize,
SizeGenerator wSizeGenerator,
SizeGenerator rSizeGenerator,
SizeGenerator wChunkGenerator,
SizeGenerator rChunkGenerator,
size_t maxOutstanding
) if (
isCoupledTransports!CoupledTransports
) {
scope transports = new CoupledTransports;
assert(transports.input);
assert(transports.output);
auto wbuf = new ubyte[totalSize];
auto rbuf = new ubyte[totalSize];
// Store some data in wbuf.
foreach (i, ref b; wbuf) {
b = i & 0xff;
}
size_t totalWritten;
size_t totalRead;
while (totalRead < totalSize) {
// Determine how large a chunk of data to write.
auto wChunkSize = wChunkGenerator.nextSize();
if (wChunkSize == 0 || wChunkSize > totalSize - totalWritten) {
wChunkSize = totalSize - totalWritten;
}
// Make sure (totalWritten - totalRead) + wChunkSize is less than
// maxOutstanding.
if (maxOutstanding > 0 &&
wChunkSize > maxOutstanding - (totalWritten - totalRead)) {
wChunkSize = maxOutstanding - (totalWritten - totalRead);
}
// Write the chunk.
size_t chunkWritten = 0;
while (chunkWritten < wChunkSize) {
auto writeSize = wSizeGenerator.nextSize();
if (writeSize == 0 || writeSize > wChunkSize - chunkWritten) {
writeSize = wChunkSize - chunkWritten;
}
transports.output.write(wbuf[totalWritten .. totalWritten + writeSize]);
chunkWritten += writeSize;
totalWritten += writeSize;
}
// Flush the data, so it will be available in the read transport
// Don't flush if wChunkSize is 0. (This should only happen if
// totalWritten == totalSize already, and we're only reading now.)
if (wChunkSize > 0) {
transports.output.flush();
}
// Determine how large a chunk of data to read back.
auto rChunkSize = rChunkGenerator.nextSize();
if (rChunkSize == 0 || rChunkSize > totalWritten - totalRead) {
rChunkSize = totalWritten - totalRead;
}
// Read the chunk.
size_t chunkRead;
while (chunkRead < rChunkSize) {
auto readSize = rSizeGenerator.nextSize();
if (readSize == 0 || readSize > rChunkSize - chunkRead) {
readSize = rChunkSize - chunkRead;
}
size_t bytesRead;
try {
bytesRead = transports.input.read(
rbuf[totalRead .. totalRead + readSize]);
} catch (TTransportException e) {
throw new Exception(format(`read(pos = %s, size = %s) threw ` ~
`exception "%s"; written so far: %s/%s bytes`, totalRead, readSize,
e.msg, totalWritten, totalSize));
}
enforce(bytesRead > 0, format(`read(pos = %s, size = %s) returned %s; ` ~
`written so far: %s/%s bytes`, totalRead, readSize, bytesRead,
totalWritten, totalSize));
chunkRead += bytesRead;
totalRead += bytesRead;
}
}
// make sure the data read back is identical to the data written
if (rbuf != wbuf) {
stderr.writefln("%s vs. %s", wbuf[$ - 4 .. $], rbuf[$ - 4 .. $]);
stderr.writefln("rbuf: %s vs. wbuf: %s", rbuf.length, wbuf.length);
}
enforce(rbuf == wbuf);
}
void testReadPartAvailable(CoupledTransports)() if (
isCoupledTransports!CoupledTransports
) {
scope transports = new CoupledTransports;
assert(transports.input);
assert(transports.output);
ubyte[10] writeBuf = 'a';
ubyte[10] readBuf;
// Attemping to read 10 bytes when only 9 are available should return 9
// immediately.
transports.output.write(writeBuf[0 .. 9]);
transports.output.flush();
auto t = Trigger(dur!"seconds"(3), transports.output, 1);
auto bytesRead = transports.input.read(readBuf);
enforce(t.fired == 0);
enforce(bytesRead == 9);
}
void testReadPartialMidframe(CoupledTransports)() if (
isCoupledTransports!CoupledTransports
) {
scope transports = new CoupledTransports;
assert(transports.input);
assert(transports.output);
ubyte[13] writeBuf = 'a';
ubyte[14] readBuf;
// Attempt to read 10 bytes, when only 9 are available, but after we have
// already read part of the data that is available. This exercises a
// different code path for several of the transports.
//
// For transports that add their own framing (e.g., TFramedTransport and
// TFileTransport), the two flush calls break up the data in to a 10 byte
// frame and a 3 byte frame. The first read then puts us partway through the
// first frame, and then we attempt to read past the end of that frame, and
// through the next frame, too.
//
// For buffered transports that perform read-ahead (e.g.,
// TBufferedTransport), the read-ahead will most likely see all 13 bytes
// written on the first read. The next read will then attempt to read past
// the end of the read-ahead buffer.
//
// Flush 10 bytes, then 3 bytes. This creates 2 separate frames for
// transports that track framing internally.
transports.output.write(writeBuf[0 .. 10]);
transports.output.flush();
transports.output.write(writeBuf[10 .. 13]);
transports.output.flush();
// Now read 4 bytes, so that we are partway through the written data.
auto bytesRead = transports.input.read(readBuf[0 .. 4]);
enforce(bytesRead == 4);
// Now attempt to read 10 bytes. Only 9 more are available.
//
// We should be able to get all 9 bytes, but it might take multiple read
// calls, since it is valid for read() to return fewer bytes than requested.
// (Most transports do immediately return 9 bytes, but the framing transports
// tend to only return to the end of the current frame, which is 6 bytes in
// this case.)
size_t totalRead = 0;
while (totalRead < 9) {
auto t = Trigger(dur!"seconds"(3), transports.output, 1);
bytesRead = transports.input.read(readBuf[4 + totalRead .. 14]);
enforce(t.fired == 0);
enforce(bytesRead > 0);
totalRead += bytesRead;
enforce(totalRead <= 9);
}
enforce(totalRead == 9);
}
void testBorrowPartAvailable(CoupledTransports)() if (
isCoupledTransports!CoupledTransports
) {
scope transports = new CoupledTransports;
assert(transports.input);
assert(transports.output);
ubyte[9] writeBuf = 'a';
ubyte[10] readBuf;
// Attemping to borrow 10 bytes when only 9 are available should return NULL
// immediately.
transports.output.write(writeBuf);
transports.output.flush();
auto t = Trigger(dur!"seconds"(3), transports.output, 1);
auto borrowLen = readBuf.length;
auto borrowedBuf = transports.input.borrow(readBuf.ptr, borrowLen);
enforce(t.fired == 0);
enforce(borrowedBuf is null);
}
void testReadNoneAvailable(CoupledTransports)() if (
isCoupledTransports!CoupledTransports
) {
scope transports = new CoupledTransports;
assert(transports.input);
assert(transports.output);
// Attempting to read when no data is available should either block until
// some data is available, or fail immediately. (e.g., TSocket blocks,
// TMemoryBuffer just fails.)
//
// If the transport blocks, it should succeed once some data is available,
// even if less than the amount requested becomes available.
ubyte[10] readBuf;
auto t = Trigger(dur!"seconds"(1), transports.output, 2);
t.add(dur!"seconds"(1), transports.output, 8);
auto bytesRead = transports.input.read(readBuf);
if (bytesRead == 0) {
enforce(t.fired == 0);
} else {
enforce(t.fired == 1);
enforce(bytesRead == 2);
}
}
void testBorrowNoneAvailable(CoupledTransports)() if (
isCoupledTransports!CoupledTransports
) {
scope transports = new CoupledTransports;
assert(transports.input);
assert(transports.output);
ubyte[16] writeBuf = 'a';
// Attempting to borrow when no data is available should fail immediately
auto t = Trigger(dur!"seconds"(1), transports.output, 10);
auto borrowLen = 10;
auto borrowedBuf = transports.input.borrow(null, borrowLen);
enforce(borrowedBuf is null);
enforce(t.fired == 0);
}
void doRwTest(CoupledTransports)(
size_t totalSize,
SizeGenerator wSizeGen,
SizeGenerator rSizeGen,
SizeGenerator wChunkSizeGen = new ConstantSizeGenerator(0),
SizeGenerator rChunkSizeGen = new ConstantSizeGenerator(0),
size_t maxOutstanding = 0
) if (
isCoupledTransports!CoupledTransports
) {
totalSize = cast(size_t)(totalSize * g_sizeMultiplier);
scope(failure) {
writefln("Test failed for %s: testReadWrite(%s, %s, %s, %s, %s, %s)",
CoupledTransports.stringof, totalSize, wSizeGen, rSizeGen,
wChunkSizeGen, rChunkSizeGen, maxOutstanding);
}
testReadWrite!CoupledTransports(totalSize, wSizeGen, rSizeGen,
wChunkSizeGen, rChunkSizeGen, maxOutstanding);
}
void doBlockingTest(CoupledTransports)() if (
isCoupledTransports!CoupledTransports
) {
void writeFailure(string name) {
writefln("Test failed for %s: %s()", CoupledTransports.stringof, name);
}
{
scope(failure) writeFailure("testReadPartAvailable");
testReadPartAvailable!CoupledTransports();
}
{
scope(failure) writeFailure("testReadPartialMidframe");
testReadPartialMidframe!CoupledTransports();
}
{
scope(failure) writeFailure("testReadNoneAvaliable");
testReadNoneAvailable!CoupledTransports();
}
{
scope(failure) writeFailure("testBorrowPartAvailable");
testBorrowPartAvailable!CoupledTransports();
}
{
scope(failure) writeFailure("testBorrowNoneAvailable");
testBorrowNoneAvailable!CoupledTransports();
}
}
SizeGenerator getGenerator(T)(T t) {
static if (is(T : SizeGenerator)) {
return t;
} else {
return new ConstantSizeGenerator(t);
}
}
template WrappedTransports(T) if (isCoupledTransports!T) {
alias TypeTuple!(
T,
CoupledBufferedTransports!T,
CoupledFramedTransports!T,
CoupledZlibTransports!T
) WrappedTransports;
}
void testRw(C, R, S)(
size_t totalSize,
R wSize,
S rSize
) if (
isCoupledTransports!C && is(typeof(getGenerator(wSize))) &&
is(typeof(getGenerator(rSize)))
) {
testRw!C(totalSize, wSize, rSize, 0, 0, 0);
}
void testRw(C, R, S, T, U)(
size_t totalSize,
R wSize,
S rSize,
T wChunkSize,
U rChunkSize,
size_t maxOutstanding = 0
) if (
isCoupledTransports!C && is(typeof(getGenerator(wSize))) &&
is(typeof(getGenerator(rSize))) && is(typeof(getGenerator(wChunkSize))) &&
is(typeof(getGenerator(rChunkSize)))
) {
foreach (T; WrappedTransports!C) {
doRwTest!T(
totalSize,
getGenerator(wSize),
getGenerator(rSize),
getGenerator(wChunkSize),
getGenerator(rChunkSize),
maxOutstanding
);
}
}
void testBlocking(C)() if (isCoupledTransports!C) {
foreach (T; WrappedTransports!C) {
doBlockingTest!T();
}
}
// A quick hack, for the sake of brevity…
float g_sizeMultiplier = 1;
version (Posix) {
immutable defaultTempDir = "/tmp";
} else version (Windows) {
import core.sys.windows.windows;
extern(Windows) DWORD GetTempPathA(DWORD nBufferLength, LPTSTR lpBuffer);
string defaultTempDir() @property {
char[MAX_PATH + 1] dir;
enforce(GetTempPathA(dir.length, dir.ptr));
return to!string(dir.ptr)[0 .. $ - 1];
}
} else static assert(false);
void main(string[] args) {
int seed = unpredictableSeed();
string tmpDir = defaultTempDir;
getopt(args, "seed", &seed, "size-multiplier", &g_sizeMultiplier,
"tmp-dir", &tmpDir);
enforce(g_sizeMultiplier >= 0, "Size multiplier must not be negative.");
writefln("Using seed: %s", seed);
rndGen().seed(seed);
CoupledFileTransports.tmpDir = tmpDir;
auto rand4k = new RandomSizeGenerator(1, 4096);
/*
* We do the basically the same set of tests for each transport type,
* although we tweak the parameters in some places.
*/
// TMemoryBuffer tests
testRw!CoupledMemoryBuffers(1024 * 1024, 0, 0);
testRw!CoupledMemoryBuffers(1024 * 256, rand4k, rand4k);
testRw!CoupledMemoryBuffers(1024 * 256, 167, 163);
testRw!CoupledMemoryBuffers(1024 * 16, 1, 1);
testRw!CoupledMemoryBuffers(1024 * 256, 0, 0, rand4k, rand4k);
testRw!CoupledMemoryBuffers(1024 * 256, rand4k, rand4k, rand4k, rand4k);
testRw!CoupledMemoryBuffers(1024 * 256, 167, 163, rand4k, rand4k);
testRw!CoupledMemoryBuffers(1024 * 16, 1, 1, rand4k, rand4k);
testBlocking!CoupledMemoryBuffers();
// TSocket tests
enum socketMaxOutstanding = 4096;
testRw!CoupledSocketTransports(1024 * 1024, 0, 0,
0, 0, socketMaxOutstanding);
testRw!CoupledSocketTransports(1024 * 256, rand4k, rand4k,
0, 0, socketMaxOutstanding);
testRw!CoupledSocketTransports(1024 * 256, 167, 163,
0, 0, socketMaxOutstanding);
// Doh. Apparently writing to a socket has some additional overhead for
// each send() call. If we have more than ~400 outstanding 1-byte write
// requests, additional send() calls start blocking.
testRw!CoupledSocketTransports(1024 * 16, 1, 1,
0, 0, 250);
testRw!CoupledSocketTransports(1024 * 256, 0, 0,
rand4k, rand4k, socketMaxOutstanding);
testRw!CoupledSocketTransports(1024 * 256, rand4k, rand4k,
rand4k, rand4k, socketMaxOutstanding);
testRw!CoupledSocketTransports(1024 * 256, 167, 163,
rand4k, rand4k, socketMaxOutstanding);
testRw!CoupledSocketTransports(1024 * 16, 1, 1,
rand4k, rand4k, 250);
testBlocking!CoupledSocketTransports();
// File transport tests.
// Cannot write more than the frame size at once.
enum maxWriteAtOnce = 1024 * 1024 * 16 - 4;
testRw!CoupledFileTransports(1024 * 1024, maxWriteAtOnce, 0);
testRw!CoupledFileTransports(1024 * 256, rand4k, rand4k);
testRw!CoupledFileTransports(1024 * 256, 167, 163);
testRw!CoupledFileTransports(1024 * 16, 1, 1);
testRw!CoupledFileTransports(1024 * 256, 0, 0, rand4k, rand4k);
testRw!CoupledFileTransports(1024 * 256, rand4k, rand4k, rand4k, rand4k);
testRw!CoupledFileTransports(1024 * 256, 167, 163, rand4k, rand4k);
testRw!CoupledFileTransports(1024 * 16, 1, 1, rand4k, rand4k);
testBlocking!CoupledFileTransports();
}
/*
* Timer handling code for use in tests that check the transport blocking
* semantics.
*
* The implementation has been hacked together in a hurry and wastes a lot of
* threads, but speed should not be the concern here.
*/
struct Trigger {
this(Duration timeout, TTransport transport, size_t writeLength) {
mutex_ = new Mutex;
cancelCondition_ = new Condition(mutex_);
info_ = new Info(timeout, transport, writeLength);
startThread();
}
~this() {
synchronized (mutex_) {
info_ = null;
cancelCondition_.notifyAll();
}
if (thread_) thread_.join();
}
@disable this(this) { assert(0); }
void add(Duration timeout, TTransport transport, size_t writeLength) {
synchronized (mutex_) {
auto info = new Info(timeout, transport, writeLength);
if (info_) {
auto prev = info_;
while (prev.next) prev = prev.next;
prev.next = info;
} else {
info_ = info;
startThread();
}
}
}
@property short fired() {
return atomicLoad(fired_);
}
private:
void timerThread() {
// KLUDGE: Make sure the std.concurrency mbox is initialized on the timer
// thread to be able to unblock the file transport.
import std.concurrency;
thisTid;
synchronized (mutex_) {
while (info_) {
auto cancelled = cancelCondition_.wait(info_.timeout);
if (cancelled) {
info_ = null;
break;
}
atomicOp!"+="(fired_, 1);
// Write some data to the transport to unblock it.
auto buf = new ubyte[info_.writeLength];
buf[] = 'b';
info_.transport.write(buf);
info_.transport.flush();
info_ = info_.next;
}
}
thread_ = null;
}
void startThread() {
thread_ = new Thread(&timerThread);
thread_.start();
}
struct Info {
this(Duration timeout, TTransport transport, size_t writeLength) {
this.timeout = timeout;
this.transport = transport;
this.writeLength = writeLength;
}
Duration timeout;
TTransport transport;
size_t writeLength;
Info* next;
}
Info* info_;
Thread thread_;
shared short fired_;
import core.sync.mutex;
Mutex mutex_;
import core.sync.condition;
Condition cancelCondition_;
}