blob: d6ecc0f7507f8f7b1a8c107f828812d93e7957bf [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
#ifndef _THRIFT_PROTOCOL_TPROTOCOL_H_
#define _THRIFT_PROTOCOL_TPROTOCOL_H_ 1
#include <thrift/transport/TTransport.h>
#include <thrift/protocol/TProtocolException.h>
#include <boost/shared_ptr.hpp>
#include <boost/static_assert.hpp>
#ifdef HAVE_NETINET_IN_H
#include <netinet/in.h>
#endif
#include <sys/types.h>
#include <string>
#include <map>
#include <vector>
// Use this to get around strict aliasing rules.
// For example, uint64_t i = bitwise_cast<uint64_t>(returns_double());
// The most obvious implementation is to just cast a pointer,
// but that doesn't work.
// For a pretty in-depth explanation of the problem, see
// http://www.cellperformance.com/mike_acton/2006/06/ (...)
// understanding_strict_aliasing.html
template <typename To, typename From>
static inline To bitwise_cast(From from) {
BOOST_STATIC_ASSERT(sizeof(From) == sizeof(To));
// BAD!!! These are all broken with -O2.
//return *reinterpret_cast<To*>(&from); // BAD!!!
//return *static_cast<To*>(static_cast<void*>(&from)); // BAD!!!
//return *(To*)(void*)&from; // BAD!!!
// Super clean and paritally blessed by section 3.9 of the standard.
//unsigned char c[sizeof(from)];
//memcpy(c, &from, sizeof(from));
//To to;
//memcpy(&to, c, sizeof(c));
//return to;
// Slightly more questionable.
// Same code emitted by GCC.
//To to;
//memcpy(&to, &from, sizeof(from));
//return to;
// Technically undefined, but almost universally supported,
// and the most efficient implementation.
union {
From f;
To t;
} u;
u.f = from;
return u.t;
}
namespace apache { namespace thrift { namespace protocol {
using apache::thrift::transport::TTransport;
#ifdef HAVE_SYS_PARAM_H
#include <sys/param.h>
#endif
#ifndef __THRIFT_BYTE_ORDER
# if defined(BYTE_ORDER) && defined(LITTLE_ENDIAN) && defined(BIG_ENDIAN)
# define __THRIFT_BYTE_ORDER BYTE_ORDER
# define __THRIFT_LITTLE_ENDIAN LITTLE_ENDIAN
# define __THRIFT_BIG_ENDIAN BIG_ENDIAN
# else
# include <boost/config.hpp>
# include <boost/detail/endian.hpp>
# define __THRIFT_BYTE_ORDER BOOST_BYTE_ORDER
# ifdef BOOST_LITTLE_ENDIAN
# define __THRIFT_LITTLE_ENDIAN __THRIFT_BYTE_ORDER
# define __THRIFT_BIG_ENDIAN 0
# else
# define __THRIFT_LITTLE_ENDIAN 0
# define __THRIFT_BIG_ENDIAN __THRIFT_BYTE_ORDER
# endif
# endif
#endif
#if __THRIFT_BYTE_ORDER == __THRIFT_BIG_ENDIAN
# define ntohll(n) (n)
# define htonll(n) (n)
# if defined(__GNUC__) && defined(__GLIBC__)
# include <byteswap.h>
# define htolell(n) bswap_64(n)
# define letohll(n) bswap_64(n)
# else /* GNUC & GLIBC */
# define bswap_64(n) \
( (((n) & 0xff00000000000000ull) >> 56) \
| (((n) & 0x00ff000000000000ull) >> 40) \
| (((n) & 0x0000ff0000000000ull) >> 24) \
| (((n) & 0x000000ff00000000ull) >> 8) \
| (((n) & 0x00000000ff000000ull) << 8) \
| (((n) & 0x0000000000ff0000ull) << 24) \
| (((n) & 0x000000000000ff00ull) << 40) \
| (((n) & 0x00000000000000ffull) << 56) )
# define htolell(n) bswap_64(n)
# define letohll(n) bswap_64(n)
# endif /* GNUC & GLIBC */
#elif __THRIFT_BYTE_ORDER == __THRIFT_LITTLE_ENDIAN
# define htolell(n) (n)
# define letohll(n) (n)
# if defined(__GNUC__) && defined(__GLIBC__)
# include <byteswap.h>
# define ntohll(n) bswap_64(n)
# define htonll(n) bswap_64(n)
# elif defined(_MSC_VER) /* Microsoft Visual C++ */
# define ntohll(n) ( _byteswap_uint64((uint64_t)n) )
# define htonll(n) ( _byteswap_uint64((uint64_t)n) )
# else /* Not GNUC/GLIBC or MSVC */
# define ntohll(n) ( (((uint64_t)ntohl((uint32_t)n)) << 32) + ntohl((uint32_t)(n >> 32)) )
# define htonll(n) ( (((uint64_t)htonl((uint32_t)n)) << 32) + htonl((uint32_t)(n >> 32)) )
# endif /* GNUC/GLIBC or MSVC or something else */
#else /* __THRIFT_BYTE_ORDER */
# error "Can't define htonll or ntohll!"
#endif
/**
* Enumerated definition of the types that the Thrift protocol supports.
* Take special note of the T_END type which is used specifically to mark
* the end of a sequence of fields.
*/
enum TType {
T_STOP = 0,
T_VOID = 1,
T_BOOL = 2,
T_BYTE = 3,
T_I08 = 3,
T_I16 = 6,
T_I32 = 8,
T_U64 = 9,
T_I64 = 10,
T_DOUBLE = 4,
T_STRING = 11,
T_UTF7 = 11,
T_STRUCT = 12,
T_MAP = 13,
T_SET = 14,
T_LIST = 15,
T_UTF8 = 16,
T_UTF16 = 17
};
/**
* Enumerated definition of the message types that the Thrift protocol
* supports.
*/
enum TMessageType {
T_CALL = 1,
T_REPLY = 2,
T_EXCEPTION = 3,
T_ONEWAY = 4
};
/**
* Helper template for implementing TProtocol::skip().
*
* Templatized to avoid having to make virtual function calls.
*/
template <class Protocol_>
uint32_t skip(Protocol_& prot, TType type) {
switch (type) {
case T_BOOL:
{
bool boolv;
return prot.readBool(boolv);
}
case T_BYTE:
{
int8_t bytev;
return prot.readByte(bytev);
}
case T_I16:
{
int16_t i16;
return prot.readI16(i16);
}
case T_I32:
{
int32_t i32;
return prot.readI32(i32);
}
case T_I64:
{
int64_t i64;
return prot.readI64(i64);
}
case T_DOUBLE:
{
double dub;
return prot.readDouble(dub);
}
case T_STRING:
{
std::string str;
return prot.readBinary(str);
}
case T_STRUCT:
{
uint32_t result = 0;
std::string name;
int16_t fid;
TType ftype;
result += prot.readStructBegin(name);
while (true) {
result += prot.readFieldBegin(name, ftype, fid);
if (ftype == T_STOP) {
break;
}
result += skip(prot, ftype);
result += prot.readFieldEnd();
}
result += prot.readStructEnd();
return result;
}
case T_MAP:
{
uint32_t result = 0;
TType keyType;
TType valType;
uint32_t i, size;
result += prot.readMapBegin(keyType, valType, size);
for (i = 0; i < size; i++) {
result += skip(prot, keyType);
result += skip(prot, valType);
}
result += prot.readMapEnd();
return result;
}
case T_SET:
{
uint32_t result = 0;
TType elemType;
uint32_t i, size;
result += prot.readSetBegin(elemType, size);
for (i = 0; i < size; i++) {
result += skip(prot, elemType);
}
result += prot.readSetEnd();
return result;
}
case T_LIST:
{
uint32_t result = 0;
TType elemType;
uint32_t i, size;
result += prot.readListBegin(elemType, size);
for (i = 0; i < size; i++) {
result += skip(prot, elemType);
}
result += prot.readListEnd();
return result;
}
case T_STOP: case T_VOID: case T_U64: case T_UTF8: case T_UTF16:
break;
}
return 0;
}
/**
* Abstract class for a thrift protocol driver. These are all the methods that
* a protocol must implement. Essentially, there must be some way of reading
* and writing all the base types, plus a mechanism for writing out structs
* with indexed fields.
*
* TProtocol objects should not be shared across multiple encoding contexts,
* as they may need to maintain internal state in some protocols (i.e. XML).
* Note that is is acceptable for the TProtocol module to do its own internal
* buffered reads/writes to the underlying TTransport where appropriate (i.e.
* when parsing an input XML stream, reading should be batched rather than
* looking ahead character by character for a close tag).
*
*/
class TProtocol {
public:
virtual ~TProtocol() {}
/**
* Writing functions.
*/
virtual uint32_t writeMessageBegin_virt(const std::string& name,
const TMessageType messageType,
const int32_t seqid) = 0;
virtual uint32_t writeMessageEnd_virt() = 0;
virtual uint32_t writeStructBegin_virt(const char* name) = 0;
virtual uint32_t writeStructEnd_virt() = 0;
virtual uint32_t writeFieldBegin_virt(const char* name,
const TType fieldType,
const int16_t fieldId) = 0;
virtual uint32_t writeFieldEnd_virt() = 0;
virtual uint32_t writeFieldStop_virt() = 0;
virtual uint32_t writeMapBegin_virt(const TType keyType,
const TType valType,
const uint32_t size) = 0;
virtual uint32_t writeMapEnd_virt() = 0;
virtual uint32_t writeListBegin_virt(const TType elemType,
const uint32_t size) = 0;
virtual uint32_t writeListEnd_virt() = 0;
virtual uint32_t writeSetBegin_virt(const TType elemType,
const uint32_t size) = 0;
virtual uint32_t writeSetEnd_virt() = 0;
virtual uint32_t writeBool_virt(const bool value) = 0;
virtual uint32_t writeByte_virt(const int8_t byte) = 0;
virtual uint32_t writeI16_virt(const int16_t i16) = 0;
virtual uint32_t writeI32_virt(const int32_t i32) = 0;
virtual uint32_t writeI64_virt(const int64_t i64) = 0;
virtual uint32_t writeDouble_virt(const double dub) = 0;
virtual uint32_t writeString_virt(const std::string& str) = 0;
virtual uint32_t writeBinary_virt(const std::string& str) = 0;
uint32_t writeMessageBegin(const std::string& name,
const TMessageType messageType,
const int32_t seqid) {
T_VIRTUAL_CALL();
return writeMessageBegin_virt(name, messageType, seqid);
}
uint32_t writeMessageEnd() {
T_VIRTUAL_CALL();
return writeMessageEnd_virt();
}
uint32_t writeStructBegin(const char* name) {
T_VIRTUAL_CALL();
return writeStructBegin_virt(name);
}
uint32_t writeStructEnd() {
T_VIRTUAL_CALL();
return writeStructEnd_virt();
}
uint32_t writeFieldBegin(const char* name,
const TType fieldType,
const int16_t fieldId) {
T_VIRTUAL_CALL();
return writeFieldBegin_virt(name, fieldType, fieldId);
}
uint32_t writeFieldEnd() {
T_VIRTUAL_CALL();
return writeFieldEnd_virt();
}
uint32_t writeFieldStop() {
T_VIRTUAL_CALL();
return writeFieldStop_virt();
}
uint32_t writeMapBegin(const TType keyType,
const TType valType,
const uint32_t size) {
T_VIRTUAL_CALL();
return writeMapBegin_virt(keyType, valType, size);
}
uint32_t writeMapEnd() {
T_VIRTUAL_CALL();
return writeMapEnd_virt();
}
uint32_t writeListBegin(const TType elemType, const uint32_t size) {
T_VIRTUAL_CALL();
return writeListBegin_virt(elemType, size);
}
uint32_t writeListEnd() {
T_VIRTUAL_CALL();
return writeListEnd_virt();
}
uint32_t writeSetBegin(const TType elemType, const uint32_t size) {
T_VIRTUAL_CALL();
return writeSetBegin_virt(elemType, size);
}
uint32_t writeSetEnd() {
T_VIRTUAL_CALL();
return writeSetEnd_virt();
}
uint32_t writeBool(const bool value) {
T_VIRTUAL_CALL();
return writeBool_virt(value);
}
uint32_t writeByte(const int8_t byte) {
T_VIRTUAL_CALL();
return writeByte_virt(byte);
}
uint32_t writeI16(const int16_t i16) {
T_VIRTUAL_CALL();
return writeI16_virt(i16);
}
uint32_t writeI32(const int32_t i32) {
T_VIRTUAL_CALL();
return writeI32_virt(i32);
}
uint32_t writeI64(const int64_t i64) {
T_VIRTUAL_CALL();
return writeI64_virt(i64);
}
uint32_t writeDouble(const double dub) {
T_VIRTUAL_CALL();
return writeDouble_virt(dub);
}
uint32_t writeString(const std::string& str) {
T_VIRTUAL_CALL();
return writeString_virt(str);
}
uint32_t writeBinary(const std::string& str) {
T_VIRTUAL_CALL();
return writeBinary_virt(str);
}
/**
* Reading functions
*/
virtual uint32_t readMessageBegin_virt(std::string& name,
TMessageType& messageType,
int32_t& seqid) = 0;
virtual uint32_t readMessageEnd_virt() = 0;
virtual uint32_t readStructBegin_virt(std::string& name) = 0;
virtual uint32_t readStructEnd_virt() = 0;
virtual uint32_t readFieldBegin_virt(std::string& name,
TType& fieldType,
int16_t& fieldId) = 0;
virtual uint32_t readFieldEnd_virt() = 0;
virtual uint32_t readMapBegin_virt(TType& keyType,
TType& valType,
uint32_t& size) = 0;
virtual uint32_t readMapEnd_virt() = 0;
virtual uint32_t readListBegin_virt(TType& elemType,
uint32_t& size) = 0;
virtual uint32_t readListEnd_virt() = 0;
virtual uint32_t readSetBegin_virt(TType& elemType,
uint32_t& size) = 0;
virtual uint32_t readSetEnd_virt() = 0;
virtual uint32_t readBool_virt(bool& value) = 0;
virtual uint32_t readBool_virt(std::vector<bool>::reference value) = 0;
virtual uint32_t readByte_virt(int8_t& byte) = 0;
virtual uint32_t readI16_virt(int16_t& i16) = 0;
virtual uint32_t readI32_virt(int32_t& i32) = 0;
virtual uint32_t readI64_virt(int64_t& i64) = 0;
virtual uint32_t readDouble_virt(double& dub) = 0;
virtual uint32_t readString_virt(std::string& str) = 0;
virtual uint32_t readBinary_virt(std::string& str) = 0;
uint32_t readMessageBegin(std::string& name,
TMessageType& messageType,
int32_t& seqid) {
T_VIRTUAL_CALL();
return readMessageBegin_virt(name, messageType, seqid);
}
uint32_t readMessageEnd() {
T_VIRTUAL_CALL();
return readMessageEnd_virt();
}
uint32_t readStructBegin(std::string& name) {
T_VIRTUAL_CALL();
return readStructBegin_virt(name);
}
uint32_t readStructEnd() {
T_VIRTUAL_CALL();
return readStructEnd_virt();
}
uint32_t readFieldBegin(std::string& name,
TType& fieldType,
int16_t& fieldId) {
T_VIRTUAL_CALL();
return readFieldBegin_virt(name, fieldType, fieldId);
}
uint32_t readFieldEnd() {
T_VIRTUAL_CALL();
return readFieldEnd_virt();
}
uint32_t readMapBegin(TType& keyType, TType& valType, uint32_t& size) {
T_VIRTUAL_CALL();
return readMapBegin_virt(keyType, valType, size);
}
uint32_t readMapEnd() {
T_VIRTUAL_CALL();
return readMapEnd_virt();
}
uint32_t readListBegin(TType& elemType, uint32_t& size) {
T_VIRTUAL_CALL();
return readListBegin_virt(elemType, size);
}
uint32_t readListEnd() {
T_VIRTUAL_CALL();
return readListEnd_virt();
}
uint32_t readSetBegin(TType& elemType, uint32_t& size) {
T_VIRTUAL_CALL();
return readSetBegin_virt(elemType, size);
}
uint32_t readSetEnd() {
T_VIRTUAL_CALL();
return readSetEnd_virt();
}
uint32_t readBool(bool& value) {
T_VIRTUAL_CALL();
return readBool_virt(value);
}
uint32_t readByte(int8_t& byte) {
T_VIRTUAL_CALL();
return readByte_virt(byte);
}
uint32_t readI16(int16_t& i16) {
T_VIRTUAL_CALL();
return readI16_virt(i16);
}
uint32_t readI32(int32_t& i32) {
T_VIRTUAL_CALL();
return readI32_virt(i32);
}
uint32_t readI64(int64_t& i64) {
T_VIRTUAL_CALL();
return readI64_virt(i64);
}
uint32_t readDouble(double& dub) {
T_VIRTUAL_CALL();
return readDouble_virt(dub);
}
uint32_t readString(std::string& str) {
T_VIRTUAL_CALL();
return readString_virt(str);
}
uint32_t readBinary(std::string& str) {
T_VIRTUAL_CALL();
return readBinary_virt(str);
}
/*
* std::vector is specialized for bool, and its elements are individual bits
* rather than bools. We need to define a different version of readBool()
* to work with std::vector<bool>.
*/
uint32_t readBool(std::vector<bool>::reference value) {
T_VIRTUAL_CALL();
return readBool_virt(value);
}
/**
* Method to arbitrarily skip over data.
*/
uint32_t skip(TType type) {
T_VIRTUAL_CALL();
return skip_virt(type);
}
virtual uint32_t skip_virt(TType type) {
return ::apache::thrift::protocol::skip(*this, type);
}
inline boost::shared_ptr<TTransport> getTransport() {
return ptrans_;
}
// TODO: remove these two calls, they are for backwards
// compatibility
inline boost::shared_ptr<TTransport> getInputTransport() {
return ptrans_;
}
inline boost::shared_ptr<TTransport> getOutputTransport() {
return ptrans_;
}
protected:
TProtocol(boost::shared_ptr<TTransport> ptrans):
ptrans_(ptrans) {
}
boost::shared_ptr<TTransport> ptrans_;
private:
TProtocol() {}
};
/**
* Constructs input and output protocol objects given transports.
*/
class TProtocolFactory {
public:
TProtocolFactory() {}
virtual ~TProtocolFactory() {}
virtual boost::shared_ptr<TProtocol> getProtocol(boost::shared_ptr<TTransport> trans) = 0;
};
/**
* Dummy protocol class.
*
* This class does nothing, and should never be instantiated.
* It is used only by the generator code.
*/
class TDummyProtocol : public TProtocol {
};
}}} // apache::thrift::protocol
#endif // #define _THRIFT_PROTOCOL_TPROTOCOL_H_ 1