blob: 2d1a2620ab58ef6a3b414403546bd2b1cdf9b71f [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
#include <thrift/concurrency/TimerManager.h>
#include <thrift/concurrency/ThreadFactory.h>
#include <thrift/concurrency/Monitor.h>
#include <assert.h>
#include <chrono>
#include <thread>
#include <iostream>
namespace apache {
namespace thrift {
namespace concurrency {
namespace test {
using namespace apache::thrift::concurrency;
class TimerManagerTests {
public:
class Task : public Runnable {
public:
Task(Monitor& monitor, uint64_t timeout)
: _timeout(timeout),
_startTime(std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::steady_clock::now().time_since_epoch()).count()),
_endTime(0),
_monitor(monitor),
_success(false),
_done(false) {}
~Task() override { std::cerr << this << std::endl; }
void run() override {
_endTime = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::steady_clock::now().time_since_epoch()).count();
_success = (_endTime - _startTime) >= _timeout;
{
Synchronized s(_monitor);
_done = true;
_monitor.notifyAll();
}
}
int64_t _timeout;
int64_t _startTime;
int64_t _endTime;
Monitor& _monitor;
bool _success;
bool _done;
};
/**
* This test creates two tasks and waits for the first to expire within 10%
* of the expected expiration time. It then verifies that the timer manager
* properly clean up itself and the remaining orphaned timeout task when the
* manager goes out of scope and its destructor is called.
*/
bool test00(uint64_t timeout = 1000LL) {
shared_ptr<TimerManagerTests::Task> orphanTask
= shared_ptr<TimerManagerTests::Task>(new TimerManagerTests::Task(_monitor, 10 * timeout));
{
TimerManager timerManager;
timerManager.threadFactory(shared_ptr<ThreadFactory>(new ThreadFactory()));
timerManager.start();
if (timerManager.state() != TimerManager::STARTED) {
std::cerr << "timerManager is not in the STARTED state, but should be" << std::endl;
return false;
}
// Don't create task yet, because its constructor sets the expected completion time, and we
// need to delay between inserting the two tasks into the run queue.
shared_ptr<TimerManagerTests::Task> task;
{
Synchronized s(_monitor);
timerManager.add(orphanTask, 10 * timeout);
std::this_thread::sleep_for(std::chrono::milliseconds(timeout));
task.reset(new TimerManagerTests::Task(_monitor, timeout));
timerManager.add(task, timeout);
_monitor.wait();
}
if (!task->_done) {
std::cerr << "task is not done, but it should have executed" << std::endl;
return false;
}
std::cout << "\t\t\t" << (task->_success ? "Success" : "Failure") << "!" << std::endl;
}
if (orphanTask->_done) {
std::cerr << "orphan task is done, but it should not have executed" << std::endl;
return false;
}
return true;
}
/**
* This test creates two tasks, removes the first one then waits for the second one. It then
* verifies that the timer manager properly clean up itself and the remaining orphaned timeout
* task when the manager goes out of scope and its destructor is called.
*/
bool test01(uint64_t timeout = 1000LL) {
TimerManager timerManager;
timerManager.threadFactory(shared_ptr<ThreadFactory>(new ThreadFactory()));
timerManager.start();
assert(timerManager.state() == TimerManager::STARTED);
Synchronized s(_monitor);
// Setup the two tasks
shared_ptr<TimerManagerTests::Task> taskToRemove
= shared_ptr<TimerManagerTests::Task>(new TimerManagerTests::Task(_monitor, timeout / 2));
timerManager.add(taskToRemove, taskToRemove->_timeout);
shared_ptr<TimerManagerTests::Task> task
= shared_ptr<TimerManagerTests::Task>(new TimerManagerTests::Task(_monitor, timeout));
timerManager.add(task, task->_timeout);
// Remove one task and wait until the other has completed
timerManager.remove(taskToRemove);
_monitor.wait(timeout * 2);
assert(!taskToRemove->_done);
assert(task->_done);
return true;
}
/**
* This test creates two tasks with the same callback and another one, then removes the two
* duplicated then waits for the last one. It then verifies that the timer manager properly
* clean up itself and the remaining orphaned timeout task when the manager goes out of scope
* and its destructor is called.
*/
bool test02(uint64_t timeout = 1000LL) {
TimerManager timerManager;
timerManager.threadFactory(shared_ptr<ThreadFactory>(new ThreadFactory()));
timerManager.start();
assert(timerManager.state() == TimerManager::STARTED);
Synchronized s(_monitor);
// Setup the one tasks and add it twice
shared_ptr<TimerManagerTests::Task> taskToRemove
= shared_ptr<TimerManagerTests::Task>(new TimerManagerTests::Task(_monitor, timeout / 3));
timerManager.add(taskToRemove, taskToRemove->_timeout);
timerManager.add(taskToRemove, taskToRemove->_timeout * 2);
shared_ptr<TimerManagerTests::Task> task
= shared_ptr<TimerManagerTests::Task>(new TimerManagerTests::Task(_monitor, timeout));
timerManager.add(task, task->_timeout);
// Remove the first task (e.g. two timers) and wait until the other has completed
timerManager.remove(taskToRemove);
_monitor.wait(timeout * 2);
assert(!taskToRemove->_done);
assert(task->_done);
return true;
}
/**
* This test creates two tasks, removes the first one then waits for the second one. It then
* verifies that the timer manager properly clean up itself and the remaining orphaned timeout
* task when the manager goes out of scope and its destructor is called.
*/
bool test03(uint64_t timeout = 1000LL) {
TimerManager timerManager;
timerManager.threadFactory(shared_ptr<ThreadFactory>(new ThreadFactory()));
timerManager.start();
assert(timerManager.state() == TimerManager::STARTED);
Synchronized s(_monitor);
// Setup the two tasks
shared_ptr<TimerManagerTests::Task> taskToRemove
= shared_ptr<TimerManagerTests::Task>(new TimerManagerTests::Task(_monitor, timeout / 2));
TimerManager::Timer timer = timerManager.add(taskToRemove, taskToRemove->_timeout);
shared_ptr<TimerManagerTests::Task> task
= shared_ptr<TimerManagerTests::Task>(new TimerManagerTests::Task(_monitor, timeout));
timerManager.add(task, task->_timeout);
// Remove one task and wait until the other has completed
timerManager.remove(timer);
_monitor.wait(timeout * 2);
assert(!taskToRemove->_done);
assert(task->_done);
// Verify behavior when removing the removed task
try {
timerManager.remove(timer);
assert(nullptr == "ERROR: This remove should send a NoSuchTaskException exception.");
} catch (NoSuchTaskException&) {
}
return true;
}
/**
* This test creates one task, and tries to remove it after it has expired.
*/
bool test04(uint64_t timeout = 1000LL) {
TimerManager timerManager;
timerManager.threadFactory(shared_ptr<ThreadFactory>(new ThreadFactory()));
timerManager.start();
assert(timerManager.state() == TimerManager::STARTED);
Synchronized s(_monitor);
// Setup the task
shared_ptr<TimerManagerTests::Task> task
= shared_ptr<TimerManagerTests::Task>(new TimerManagerTests::Task(_monitor, timeout / 10));
TimerManager::Timer timer = timerManager.add(task, task->_timeout);
task.reset();
// Wait until the task has completed
_monitor.wait(timeout);
// Verify behavior when removing the expired task
// notify is called inside the task so the task may still
// be running when we get here, so we need to loop...
for (;;) {
try {
timerManager.remove(timer);
assert(nullptr == "ERROR: This remove should throw NoSuchTaskException, or UncancellableTaskException.");
} catch (const NoSuchTaskException&) {
break;
} catch (const UncancellableTaskException&) {
// the thread was still exiting; try again...
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
}
return true;
}
friend class TestTask;
Monitor _monitor;
};
}
}
}
} // apache::thrift::concurrency