blob: 767e56326ad85b549dabd604b6d957c5ed6d1780 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
#ifndef _GNU_SOURCE
#define _GNU_SOURCE // needed for getopt_long
#endif
#include <stdlib.h>
#include <time.h>
#include <unistd.h>
#include <getopt.h>
#include <signal.h>
#include <sstream>
#include <tr1/functional>
#include <boost/mpl/list.hpp>
#include <boost/shared_array.hpp>
#include <boost/random.hpp>
#include <boost/type_traits.hpp>
#include <boost/test/unit_test.hpp>
#include <transport/TBufferTransports.h>
#include <transport/TFDTransport.h>
#include <transport/TFileTransport.h>
#include <transport/TZlibTransport.h>
#include <transport/TSocket.h>
using namespace apache::thrift::transport;
static boost::mt19937 rng;
static const char* tmp_dir = "/tmp";
void initrand(unsigned int seed) {
rng.seed(seed);
}
class SizeGenerator {
public:
virtual ~SizeGenerator() {}
virtual uint32_t nextSize() = 0;
virtual std::string describe() const = 0;
};
class ConstantSizeGenerator : public SizeGenerator {
public:
ConstantSizeGenerator(uint32_t value) : value_(value) {}
uint32_t nextSize() { return value_; }
std::string describe() const {
std::ostringstream desc;
desc << value_;
return desc.str();
}
private:
uint32_t value_;
};
class RandomSizeGenerator : public SizeGenerator {
public:
RandomSizeGenerator(uint32_t min, uint32_t max) :
generator_(rng, boost::uniform_int<int>(min, max)) {}
uint32_t nextSize() { return generator_(); }
std::string describe() const {
std::ostringstream desc;
desc << "rand(" << getMin() << ", " << getMax() << ")";
return desc.str();
}
uint32_t getMin() const { return generator_.distribution().min(); }
uint32_t getMax() const { return generator_.distribution().max(); }
private:
boost::variate_generator< boost::mt19937&, boost::uniform_int<int> >
generator_;
};
/**
* This class exists solely to make the TEST_RW() macro easier to use.
* - it can be constructed implicitly from an integer
* - it can contain either a ConstantSizeGenerator or a RandomSizeGenerator
* (TEST_RW can't take a SizeGenerator pointer or reference, since it needs
* to make a copy of the generator to bind it to the test function.)
*/
class GenericSizeGenerator : public SizeGenerator {
public:
GenericSizeGenerator(uint32_t value) :
generator_(new ConstantSizeGenerator(value)) {}
GenericSizeGenerator(uint32_t min, uint32_t max) :
generator_(new RandomSizeGenerator(min, max)) {}
uint32_t nextSize() { return generator_->nextSize(); }
std::string describe() const { return generator_->describe(); }
private:
boost::shared_ptr<SizeGenerator> generator_;
};
/**************************************************************************
* Classes to set up coupled transports
**************************************************************************/
/**
* Helper class to represent a coupled pair of transports.
*
* Data written to the out transport can be read from the in transport.
*
* This is used as the base class for the various coupled transport
* implementations. It shouldn't be instantiated directly.
*/
template <class Transport_>
class CoupledTransports {
public:
virtual ~CoupledTransports() {}
typedef Transport_ TransportType;
CoupledTransports() : in(), out() {}
boost::shared_ptr<Transport_> in;
boost::shared_ptr<Transport_> out;
private:
CoupledTransports(const CoupledTransports&);
CoupledTransports &operator=(const CoupledTransports&);
};
/**
* Coupled TMemoryBuffers
*/
class CoupledMemoryBuffers : public CoupledTransports<TMemoryBuffer> {
public:
CoupledMemoryBuffers() :
buf(new TMemoryBuffer) {
in = buf;
out = buf;
}
boost::shared_ptr<TMemoryBuffer> buf;
};
/**
* Helper template class for creating coupled transports that wrap
* another transport.
*/
template <class WrapperTransport_, class InnerCoupledTransports_>
class CoupledWrapperTransportsT : public CoupledTransports<WrapperTransport_> {
public:
CoupledWrapperTransportsT() {
if (inner_.in) {
this->in.reset(new WrapperTransport_(inner_.in));
}
if (inner_.out) {
this->out.reset(new WrapperTransport_(inner_.out));
}
}
InnerCoupledTransports_ inner_;
};
/**
* Coupled TBufferedTransports.
*/
template <class InnerTransport_>
class CoupledBufferedTransportsT :
public CoupledWrapperTransportsT<TBufferedTransport, InnerTransport_> {
};
typedef CoupledBufferedTransportsT<CoupledMemoryBuffers>
CoupledBufferedTransports;
/**
* Coupled TFramedTransports.
*/
template <class InnerTransport_>
class CoupledFramedTransportsT :
public CoupledWrapperTransportsT<TFramedTransport, InnerTransport_> {
};
typedef CoupledFramedTransportsT<CoupledMemoryBuffers>
CoupledFramedTransports;
/**
* Coupled TZlibTransports.
*/
template <class InnerTransport_>
class CoupledZlibTransportsT :
public CoupledWrapperTransportsT<TZlibTransport, InnerTransport_> {
};
typedef CoupledZlibTransportsT<CoupledMemoryBuffers>
CoupledZlibTransports;
/**
* Coupled TFDTransports.
*/
class CoupledFDTransports : public CoupledTransports<TFDTransport> {
public:
CoupledFDTransports() {
int pipes[2];
if (pipe(pipes) != 0) {
return;
}
in.reset(new TFDTransport(pipes[0], TFDTransport::CLOSE_ON_DESTROY));
out.reset(new TFDTransport(pipes[1], TFDTransport::CLOSE_ON_DESTROY));
}
};
/**
* Coupled TSockets
*/
class CoupledSocketTransports : public CoupledTransports<TSocket> {
public:
CoupledSocketTransports() {
int sockets[2];
if (socketpair(PF_UNIX, SOCK_STREAM, 0, sockets) != 0) {
return;
}
in.reset(new TSocket(sockets[0]));
out.reset(new TSocket(sockets[1]));
}
};
/**
* Coupled TFileTransports
*/
class CoupledFileTransports : public CoupledTransports<TFileTransport> {
public:
CoupledFileTransports() {
// Create a temporary file to use
size_t filename_len = strlen(tmp_dir) + 32;
filename = new char[filename_len];
snprintf(filename, filename_len,
"%s/thrift.transport_test.XXXXXX", tmp_dir);
fd = mkstemp(filename);
if (fd < 0) {
return;
}
in.reset(new TFileTransport(filename, true));
out.reset(new TFileTransport(filename));
}
~CoupledFileTransports() {
if (fd >= 0) {
close(fd);
unlink(filename);
}
delete[] filename;
}
char* filename;
int fd;
};
/**
* Wrapper around another CoupledTransports implementation that exposes the
* transports as TTransport pointers.
*
* This is used since accessing a transport via a "TTransport*" exercises a
* different code path than using the base pointer class. As part of the
* template code changes, most transport methods are no longer virtual.
*/
template <class CoupledTransports_>
class CoupledTTransports : public CoupledTransports<TTransport> {
public:
CoupledTTransports() : transports() {
in = transports.in;
out = transports.out;
}
CoupledTransports_ transports;
};
/**
* Wrapper around another CoupledTransports implementation that exposes the
* transports as TBufferBase pointers.
*
* This can only be instantiated with a transport type that is a subclass of
* TBufferBase.
*/
template <class CoupledTransports_>
class CoupledBufferBases : public CoupledTransports<TBufferBase> {
public:
CoupledBufferBases() : transports() {
in = transports.in;
out = transports.out;
}
CoupledTransports_ transports;
};
/**************************************************************************
* Alarm handling code for use in tests that check the transport blocking
* semantics.
*
* If the transport ends up blocking, we don't want to hang forever. We use
* SIGALRM to fire schedule signal to wake up and try to write data so the
* transport will unblock.
*
* It isn't really the safest thing in the world to be mucking around with
* complicated global data structures in a signal handler. It should probably
* be okay though, since we know the main thread should always be blocked in a
* read() request when the signal handler is running.
**************************************************************************/
struct TriggerInfo {
TriggerInfo(int seconds, const boost::shared_ptr<TTransport>& transport,
uint32_t writeLength) :
timeoutSeconds(seconds),
transport(transport),
writeLength(writeLength),
next(NULL) {}
int timeoutSeconds;
boost::shared_ptr<TTransport> transport;
uint32_t writeLength;
TriggerInfo* next;
};
TriggerInfo* triggerInfo;
unsigned int numTriggersFired;
void set_alarm();
void alarm_handler(int signum) {
(void) signum;
// The alarm timed out, which almost certainly means we're stuck
// on a transport that is incorrectly blocked.
++numTriggersFired;
// Note: we print messages to stdout instead of stderr, since
// tools/test/runner only records stdout messages in the failure messages for
// boost tests. (boost prints its test info to stdout.)
printf("Timeout alarm expired; attempting to unblock transport\n");
if (triggerInfo == NULL) {
printf(" trigger stack is empty!\n");
}
// Pop off the first TriggerInfo.
// If there is another one, schedule an alarm for it.
TriggerInfo* info = triggerInfo;
triggerInfo = info->next;
set_alarm();
// Write some data to the transport to hopefully unblock it.
uint8_t* buf = new uint8_t[info->writeLength];
memset(buf, 'b', info->writeLength);
boost::scoped_array<uint8_t> array(buf);
info->transport->write(buf, info->writeLength);
info->transport->flush();
delete info;
}
void set_alarm() {
if (triggerInfo == NULL) {
// clear any alarm
alarm(0);
return;
}
struct sigaction action;
memset(&action, 0, sizeof(action));
action.sa_handler = alarm_handler;
action.sa_flags = SA_RESETHAND;
sigemptyset(&action.sa_mask);
sigaction(SIGALRM, &action, NULL);
alarm(triggerInfo->timeoutSeconds);
}
/**
* Add a trigger to be scheduled "seconds" seconds after the
* last currently scheduled trigger.
*
* (Note that this is not "seconds" from now. That might be more logical, but
* would require slightly more complicated sorting, rather than just appending
* to the end.)
*/
void add_trigger(unsigned int seconds,
const boost::shared_ptr<TTransport> &transport,
uint32_t write_len) {
TriggerInfo* info = new TriggerInfo(seconds, transport, write_len);
if (triggerInfo == NULL) {
// This is the first trigger.
// Set triggerInfo, and schedule the alarm
triggerInfo = info;
set_alarm();
} else {
// Add this trigger to the end of the list
TriggerInfo* prev = triggerInfo;
while (prev->next) {
prev = prev->next;
}
prev->next = info;
}
}
void clear_triggers() {
TriggerInfo *info = triggerInfo;
alarm(0);
triggerInfo = NULL;
numTriggersFired = 0;
while (info != NULL) {
TriggerInfo* next = info->next;
delete info;
info = next;
}
}
void set_trigger(unsigned int seconds,
const boost::shared_ptr<TTransport> &transport,
uint32_t write_len) {
clear_triggers();
add_trigger(seconds, transport, write_len);
}
/**************************************************************************
* Test functions
**************************************************************************/
/**
* Test interleaved write and read calls.
*
* Generates a buffer totalSize bytes long, then writes it to the transport,
* and verifies the written data can be read back correctly.
*
* Mode of operation:
* - call wChunkGenerator to figure out how large of a chunk to write
* - call wSizeGenerator to get the size for individual write() calls,
* and do this repeatedly until the entire chunk is written.
* - call rChunkGenerator to figure out how large of a chunk to read
* - call rSizeGenerator to get the size for individual read() calls,
* and do this repeatedly until the entire chunk is read.
* - repeat until the full buffer is written and read back,
* then compare the data read back against the original buffer
*
*
* - If any of the size generators return 0, this means to use the maximum
* possible size.
*
* - If maxOutstanding is non-zero, write chunk sizes will be chosen such that
* there are never more than maxOutstanding bytes waiting to be read back.
*/
template <class CoupledTransports>
void test_rw(uint32_t totalSize,
SizeGenerator& wSizeGenerator,
SizeGenerator& rSizeGenerator,
SizeGenerator& wChunkGenerator,
SizeGenerator& rChunkGenerator,
uint32_t maxOutstanding) {
CoupledTransports transports;
BOOST_REQUIRE(transports.in != NULL);
BOOST_REQUIRE(transports.out != NULL);
boost::shared_array<uint8_t> wbuf =
boost::shared_array<uint8_t>(new uint8_t[totalSize]);
boost::shared_array<uint8_t> rbuf =
boost::shared_array<uint8_t>(new uint8_t[totalSize]);
// store some data in wbuf
for (uint32_t n = 0; n < totalSize; ++n) {
wbuf[n] = (n & 0xff);
}
// clear rbuf
memset(rbuf.get(), 0, totalSize);
uint32_t total_written = 0;
uint32_t total_read = 0;
while (total_read < totalSize) {
// Determine how large a chunk of data to write
uint32_t wchunk_size = wChunkGenerator.nextSize();
if (wchunk_size == 0 || wchunk_size > totalSize - total_written) {
wchunk_size = totalSize - total_written;
}
// Make sure (total_written - total_read) + wchunk_size
// is less than maxOutstanding
if (maxOutstanding > 0 &&
wchunk_size > maxOutstanding - (total_written - total_read)) {
wchunk_size = maxOutstanding - (total_written - total_read);
}
// Write the chunk
uint32_t chunk_written = 0;
while (chunk_written < wchunk_size) {
uint32_t write_size = wSizeGenerator.nextSize();
if (write_size == 0 || write_size > wchunk_size - chunk_written) {
write_size = wchunk_size - chunk_written;
}
transports.out->write(wbuf.get() + total_written, write_size);
chunk_written += write_size;
total_written += write_size;
}
// Flush the data, so it will be available in the read transport
// Don't flush if wchunk_size is 0. (This should only happen if
// total_written == totalSize already, and we're only reading now.)
if (wchunk_size > 0) {
transports.out->flush();
}
// Determine how large a chunk of data to read back
uint32_t rchunk_size = rChunkGenerator.nextSize();
if (rchunk_size == 0 || rchunk_size > total_written - total_read) {
rchunk_size = total_written - total_read;
}
// Read the chunk
uint32_t chunk_read = 0;
while (chunk_read < rchunk_size) {
uint32_t read_size = rSizeGenerator.nextSize();
if (read_size == 0 || read_size > rchunk_size - chunk_read) {
read_size = rchunk_size - chunk_read;
}
int bytes_read = -1;
try {
bytes_read = transports.in->read(rbuf.get() + total_read, read_size);
} catch (TTransportException& e) {
BOOST_FAIL("read(pos=" << total_read << ", size=" << read_size <<
") threw exception \"" << e.what() <<
"\"; written so far: " << total_written << " / " <<
totalSize << " bytes");
}
BOOST_REQUIRE_MESSAGE(bytes_read > 0,
"read(pos=" << total_read << ", size=" <<
read_size << ") returned " << bytes_read <<
"; written so far: " << total_written << " / " <<
totalSize << " bytes");
chunk_read += bytes_read;
total_read += bytes_read;
}
}
// make sure the data read back is identical to the data written
BOOST_CHECK_EQUAL(memcmp(rbuf.get(), wbuf.get(), totalSize), 0);
}
template <class CoupledTransports>
void test_read_part_available() {
CoupledTransports transports;
BOOST_REQUIRE(transports.in != NULL);
BOOST_REQUIRE(transports.out != NULL);
uint8_t write_buf[16];
uint8_t read_buf[16];
memset(write_buf, 'a', sizeof(write_buf));
// Attemping to read 10 bytes when only 9 are available should return 9
// immediately.
transports.out->write(write_buf, 9);
transports.out->flush();
set_trigger(3, transports.out, 1);
uint32_t bytes_read = transports.in->read(read_buf, 10);
BOOST_CHECK_EQUAL(numTriggersFired, (unsigned int) 0);
BOOST_CHECK_EQUAL(bytes_read, (uint32_t) 9);
clear_triggers();
}
template <class CoupledTransports>
void test_read_partial_midframe() {
CoupledTransports transports;
BOOST_REQUIRE(transports.in != NULL);
BOOST_REQUIRE(transports.out != NULL);
uint8_t write_buf[16];
uint8_t read_buf[16];
memset(write_buf, 'a', sizeof(write_buf));
// Attempt to read 10 bytes, when only 9 are available, but after we have
// already read part of the data that is available. This exercises a
// different code path for several of the transports.
//
// For transports that add their own framing (e.g., TFramedTransport and
// TFileTransport), the two flush calls break up the data in to a 10 byte
// frame and a 3 byte frame. The first read then puts us partway through the
// first frame, and then we attempt to read past the end of that frame, and
// through the next frame, too.
//
// For buffered transports that perform read-ahead (e.g.,
// TBufferedTransport), the read-ahead will most likely see all 13 bytes
// written on the first read. The next read will then attempt to read past
// the end of the read-ahead buffer.
//
// Flush 10 bytes, then 3 bytes. This creates 2 separate frames for
// transports that track framing internally.
transports.out->write(write_buf, 10);
transports.out->flush();
transports.out->write(write_buf, 3);
transports.out->flush();
// Now read 4 bytes, so that we are partway through the written data.
uint32_t bytes_read = transports.in->read(read_buf, 4);
BOOST_CHECK_EQUAL(bytes_read, (uint32_t) 4);
// Now attempt to read 10 bytes. Only 9 more are available.
//
// We should be able to get all 9 bytes, but it might take multiple read
// calls, since it is valid for read() to return fewer bytes than requested.
// (Most transports do immediately return 9 bytes, but the framing transports
// tend to only return to the end of the current frame, which is 6 bytes in
// this case.)
uint32_t total_read = 0;
while (total_read < 9) {
set_trigger(3, transports.out, 1);
bytes_read = transports.in->read(read_buf, 10);
BOOST_REQUIRE_EQUAL(numTriggersFired, (unsigned int) 0);
BOOST_REQUIRE_GT(bytes_read, (uint32_t) 0);
total_read += bytes_read;
BOOST_REQUIRE_LE(total_read, (uint32_t) 9);
}
BOOST_CHECK_EQUAL(total_read, (uint32_t) 9);
clear_triggers();
}
template <class CoupledTransports>
void test_borrow_part_available() {
CoupledTransports transports;
BOOST_REQUIRE(transports.in != NULL);
BOOST_REQUIRE(transports.out != NULL);
uint8_t write_buf[16];
uint8_t read_buf[16];
memset(write_buf, 'a', sizeof(write_buf));
// Attemping to borrow 10 bytes when only 9 are available should return NULL
// immediately.
transports.out->write(write_buf, 9);
transports.out->flush();
set_trigger(3, transports.out, 1);
uint32_t borrow_len = 10;
const uint8_t* borrowed_buf = transports.in->borrow(read_buf, &borrow_len);
BOOST_CHECK_EQUAL(numTriggersFired, (unsigned int) 0);
BOOST_CHECK(borrowed_buf == NULL);
clear_triggers();
}
template <class CoupledTransports>
void test_read_none_available() {
CoupledTransports transports;
BOOST_REQUIRE(transports.in != NULL);
BOOST_REQUIRE(transports.out != NULL);
uint8_t write_buf[16];
uint8_t read_buf[16];
memset(write_buf, 'a', sizeof(write_buf));
// Attempting to read when no data is available should either block until
// some data is available, or fail immediately. (e.g., TSocket blocks,
// TMemoryBuffer just fails.)
//
// If the transport blocks, it should succeed once some data is available,
// even if less than the amount requested becomes available.
set_trigger(1, transports.out, 2);
add_trigger(1, transports.out, 8);
uint32_t bytes_read = transports.in->read(read_buf, 10);
if (bytes_read == 0) {
BOOST_CHECK_EQUAL(numTriggersFired, (unsigned int) 0);
clear_triggers();
} else {
BOOST_CHECK_EQUAL(numTriggersFired, (unsigned int) 1);
BOOST_CHECK_EQUAL(bytes_read, (uint32_t) 2);
}
clear_triggers();
}
template <class CoupledTransports>
void test_borrow_none_available() {
CoupledTransports transports;
BOOST_REQUIRE(transports.in != NULL);
BOOST_REQUIRE(transports.out != NULL);
uint8_t write_buf[16];
memset(write_buf, 'a', sizeof(write_buf));
// Attempting to borrow when no data is available should fail immediately
set_trigger(1, transports.out, 10);
uint32_t borrow_len = 10;
const uint8_t* borrowed_buf = transports.in->borrow(NULL, &borrow_len);
BOOST_CHECK(borrowed_buf == NULL);
BOOST_CHECK_EQUAL(numTriggersFired, (unsigned int) 0);
clear_triggers();
}
/**************************************************************************
* Test case generation
*
* Pretty ugly and annoying. This would be much easier if we the unit test
* framework didn't force each test to be a separate function.
* - Writing a completely separate function definition for each of these would
* result in a lot of repetitive boilerplate code.
* - Combining many tests into a single function makes it more difficult to
* tell precisely which tests failed. It also means you can't get a progress
* update after each test, and the tests are already fairly slow.
* - Similar registration could be acheived with BOOST_TEST_CASE_TEMPLATE,
* but it requires a lot of awkward MPL code, and results in useless test
* case names. (The names are generated from std::type_info::name(), which
* is compiler-dependent. gcc returns mangled names.)
**************************************************************************/
#define ADD_TEST_RW(CoupledTransports, totalSize, ...) \
addTestRW< CoupledTransports >(BOOST_STRINGIZE(CoupledTransports), \
totalSize, ## __VA_ARGS__);
#define TEST_RW(CoupledTransports, totalSize, ...) \
do { \
/* Add the test as specified, to test the non-virtual function calls */ \
ADD_TEST_RW(CoupledTransports, totalSize, ## __VA_ARGS__); \
/* \
* Also test using the transport as a TTransport*, to test \
* the read_virt()/write_virt() calls \
*/ \
ADD_TEST_RW(CoupledTTransports<CoupledTransports>, \
totalSize, ## __VA_ARGS__); \
/* Test wrapping the transport with TBufferedTransport */ \
ADD_TEST_RW(CoupledBufferedTransportsT<CoupledTransports>, \
totalSize, ## __VA_ARGS__); \
/* Test wrapping the transport with TFramedTransports */ \
ADD_TEST_RW(CoupledFramedTransportsT<CoupledTransports>, \
totalSize, ## __VA_ARGS__); \
/* Test wrapping the transport with TZlibTransport */ \
ADD_TEST_RW(CoupledZlibTransportsT<CoupledTransports>, \
totalSize, ## __VA_ARGS__); \
} while (0)
#define ADD_TEST_BLOCKING(CoupledTransports) \
addTestBlocking< CoupledTransports >(BOOST_STRINGIZE(CoupledTransports));
#define TEST_BLOCKING_BEHAVIOR(CoupledTransports) \
ADD_TEST_BLOCKING(CoupledTransports); \
ADD_TEST_BLOCKING(CoupledTTransports<CoupledTransports>); \
ADD_TEST_BLOCKING(CoupledBufferedTransportsT<CoupledTransports>); \
ADD_TEST_BLOCKING(CoupledFramedTransportsT<CoupledTransports>); \
ADD_TEST_BLOCKING(CoupledZlibTransportsT<CoupledTransports>);
class TransportTestGen {
public:
TransportTestGen(boost::unit_test::test_suite* suite,
float sizeMultiplier) :
suite_(suite),
sizeMultiplier_(sizeMultiplier) {}
void generate() {
GenericSizeGenerator rand4k(1, 4096);
/*
* We do the basically the same set of tests for each transport type,
* although we tweak the parameters in some places.
*/
// TMemoryBuffer tests
TEST_RW(CoupledMemoryBuffers, 1024*1024, 0, 0);
TEST_RW(CoupledMemoryBuffers, 1024*256, rand4k, rand4k);
TEST_RW(CoupledMemoryBuffers, 1024*256, 167, 163);
TEST_RW(CoupledMemoryBuffers, 1024*16, 1, 1);
TEST_RW(CoupledMemoryBuffers, 1024*256, 0, 0, rand4k, rand4k);
TEST_RW(CoupledMemoryBuffers, 1024*256, rand4k, rand4k, rand4k, rand4k);
TEST_RW(CoupledMemoryBuffers, 1024*256, 167, 163, rand4k, rand4k);
TEST_RW(CoupledMemoryBuffers, 1024*16, 1, 1, rand4k, rand4k);
TEST_BLOCKING_BEHAVIOR(CoupledMemoryBuffers);
// TFDTransport tests
// Since CoupledFDTransports tests with a pipe, writes will block
// if there is too much outstanding unread data in the pipe.
uint32_t fd_max_outstanding = 4096;
TEST_RW(CoupledFDTransports, 1024*1024, 0, 0,
0, 0, fd_max_outstanding);
TEST_RW(CoupledFDTransports, 1024*256, rand4k, rand4k,
0, 0, fd_max_outstanding);
TEST_RW(CoupledFDTransports, 1024*256, 167, 163,
0, 0, fd_max_outstanding);
TEST_RW(CoupledFDTransports, 1024*16, 1, 1,
0, 0, fd_max_outstanding);
TEST_RW(CoupledFDTransports, 1024*256, 0, 0,
rand4k, rand4k, fd_max_outstanding);
TEST_RW(CoupledFDTransports, 1024*256, rand4k, rand4k,
rand4k, rand4k, fd_max_outstanding);
TEST_RW(CoupledFDTransports, 1024*256, 167, 163,
rand4k, rand4k, fd_max_outstanding);
TEST_RW(CoupledFDTransports, 1024*16, 1, 1,
rand4k, rand4k, fd_max_outstanding);
TEST_BLOCKING_BEHAVIOR(CoupledFDTransports);
// TSocket tests
uint32_t socket_max_outstanding = 4096;
TEST_RW(CoupledSocketTransports, 1024*1024, 0, 0,
0, 0, socket_max_outstanding);
TEST_RW(CoupledSocketTransports, 1024*256, rand4k, rand4k,
0, 0, socket_max_outstanding);
TEST_RW(CoupledSocketTransports, 1024*256, 167, 163,
0, 0, socket_max_outstanding);
// Doh. Apparently writing to a socket has some additional overhead for
// each send() call. If we have more than ~400 outstanding 1-byte write
// requests, additional send() calls start blocking.
TEST_RW(CoupledSocketTransports, 1024*16, 1, 1,
0, 0, 400);
TEST_RW(CoupledSocketTransports, 1024*256, 0, 0,
rand4k, rand4k, socket_max_outstanding);
TEST_RW(CoupledSocketTransports, 1024*256, rand4k, rand4k,
rand4k, rand4k, socket_max_outstanding);
TEST_RW(CoupledSocketTransports, 1024*256, 167, 163,
rand4k, rand4k, socket_max_outstanding);
TEST_RW(CoupledSocketTransports, 1024*16, 1, 1,
rand4k, rand4k, 400);
TEST_BLOCKING_BEHAVIOR(CoupledSocketTransports);
// TFileTransport tests
// We use smaller buffer sizes here, since TFileTransport is fairly slow.
//
// TFileTransport can't write more than 16MB at once
uint32_t max_write_at_once = 1024*1024*16 - 4;
TEST_RW(CoupledFileTransports, 1024*1024, max_write_at_once, 0);
TEST_RW(CoupledFileTransports, 1024*128, rand4k, rand4k);
TEST_RW(CoupledFileTransports, 1024*128, 167, 163);
TEST_RW(CoupledFileTransports, 1024*2, 1, 1);
TEST_RW(CoupledFileTransports, 1024*64, 0, 0, rand4k, rand4k);
TEST_RW(CoupledFileTransports, 1024*64,
rand4k, rand4k, rand4k, rand4k);
TEST_RW(CoupledFileTransports, 1024*64, 167, 163, rand4k, rand4k);
TEST_RW(CoupledFileTransports, 1024*2, 1, 1, rand4k, rand4k);
TEST_BLOCKING_BEHAVIOR(CoupledFileTransports);
// Add some tests that access TBufferedTransport and TFramedTransport
// via TTransport pointers and TBufferBase pointers.
ADD_TEST_RW(CoupledTTransports<CoupledBufferedTransports>,
1024*1024, rand4k, rand4k, rand4k, rand4k);
ADD_TEST_RW(CoupledBufferBases<CoupledBufferedTransports>,
1024*1024, rand4k, rand4k, rand4k, rand4k);
ADD_TEST_RW(CoupledTTransports<CoupledFramedTransports>,
1024*1024, rand4k, rand4k, rand4k, rand4k);
ADD_TEST_RW(CoupledBufferBases<CoupledFramedTransports>,
1024*1024, rand4k, rand4k, rand4k, rand4k);
// Test using TZlibTransport via a TTransport pointer
ADD_TEST_RW(CoupledTTransports<CoupledZlibTransports>,
1024*1024, rand4k, rand4k, rand4k, rand4k);
}
private:
template <class CoupledTransports>
void addTestRW(const char* transport_name, uint32_t totalSize,
GenericSizeGenerator wSizeGen, GenericSizeGenerator rSizeGen,
GenericSizeGenerator wChunkSizeGen = 0,
GenericSizeGenerator rChunkSizeGen = 0,
uint32_t maxOutstanding = 0,
uint32_t expectedFailures = 0) {
// adjust totalSize by the specified sizeMultiplier_ first
totalSize = static_cast<uint32_t>(totalSize * sizeMultiplier_);
std::ostringstream name;
name << transport_name << "::test_rw(" << totalSize << ", " <<
wSizeGen.describe() << ", " << rSizeGen.describe() << ", " <<
wChunkSizeGen.describe() << ", " << rChunkSizeGen.describe() << ", " <<
maxOutstanding << ")";
boost::unit_test::callback0<> test_func =
std::tr1::bind(test_rw<CoupledTransports>, totalSize,
wSizeGen, rSizeGen, wChunkSizeGen, rChunkSizeGen,
maxOutstanding);
boost::unit_test::test_case* tc =
boost::unit_test::make_test_case(test_func, name.str());
suite_->add(tc, expectedFailures);
}
template <class CoupledTransports>
void addTestBlocking(const char* transportName,
uint32_t expectedFailures = 0) {
char name[1024];
boost::unit_test::test_case* tc;
snprintf(name, sizeof(name), "%s::test_read_part_available()",
transportName);
tc = boost::unit_test::make_test_case(
test_read_part_available<CoupledTransports>, name);
suite_->add(tc, expectedFailures);
snprintf(name, sizeof(name), "%s::test_read_partial_midframe()",
transportName);
tc = boost::unit_test::make_test_case(
test_read_partial_midframe<CoupledTransports>, name);
suite_->add(tc, expectedFailures);
snprintf(name, sizeof(name), "%s::test_read_none_available()",
transportName);
tc = boost::unit_test::make_test_case(
test_read_none_available<CoupledTransports>, name);
suite_->add(tc, expectedFailures);
snprintf(name, sizeof(name), "%s::test_borrow_part_available()",
transportName);
tc = boost::unit_test::make_test_case(
test_borrow_part_available<CoupledTransports>, name);
suite_->add(tc, expectedFailures);
snprintf(name, sizeof(name), "%s::test_borrow_none_available()",
transportName);
tc = boost::unit_test::make_test_case(
test_borrow_none_available<CoupledTransports>, name);
suite_->add(tc, expectedFailures);
}
boost::unit_test::test_suite* suite_;
// sizeMultiplier_ is configurable via the command line, and allows the
// user to adjust between smaller buffers that can be tested quickly,
// or larger buffers that more thoroughly exercise the code, but take
// longer.
float sizeMultiplier_;
};
/**************************************************************************
* General Initialization
**************************************************************************/
void print_usage(FILE* f, const char* argv0) {
fprintf(f, "Usage: %s [boost_options] [options]\n", argv0);
fprintf(f, "Options:\n");
fprintf(f, " --seed=<N>, -s <N>\n");
fprintf(f, " --tmp-dir=DIR, -t DIR\n");
fprintf(f, " --help\n");
}
struct Options {
int seed;
bool haveSeed;
float sizeMultiplier;
};
void parse_args(int argc, char* argv[], Options* options) {
bool have_seed = false;
options->sizeMultiplier = 1;
struct option long_opts[] = {
{ "help", false, NULL, 'h' },
{ "seed", true, NULL, 's' },
{ "tmp-dir", true, NULL, 't' },
{ "size-multiplier", true, NULL, 'x' },
{ NULL, 0, NULL, 0 }
};
while (true) {
optopt = 1;
int optchar = getopt_long(argc, argv, "hs:t:x:", long_opts, NULL);
if (optchar == -1) {
break;
}
switch (optchar) {
case 't':
tmp_dir = optarg;
break;
case 's': {
char *endptr;
options->seed = strtol(optarg, &endptr, 0);
if (endptr == optarg || *endptr != '\0') {
fprintf(stderr, "invalid seed value \"%s\": must be an integer\n",
optarg);
exit(1);
}
have_seed = true;
break;
}
case 'h':
print_usage(stdout, argv[0]);
exit(0);
case 'x': {
char *endptr;
options->sizeMultiplier = strtof(optarg, &endptr);
if (endptr == optarg || *endptr != '\0') {
fprintf(stderr, "invalid size multiplier \"%s\": must be a number\n",
optarg);
exit(1);
}
if (options->sizeMultiplier < 0) {
fprintf(stderr, "invalid size multiplier \"%s\": "
"must be non-negative\n", optarg);
exit(1);
}
break;
}
case '?':
exit(1);
default:
// Only happens if someone adds another option to the optarg string,
// but doesn't update the switch statement to handle it.
fprintf(stderr, "unknown option \"-%c\"\n", optchar);
exit(1);
}
}
if (!have_seed) {
// choose a seed now if the user didn't specify one
struct timeval tv;
struct timezone tz;
gettimeofday(&tv, &tz);
options->seed = tv.tv_sec ^ tv.tv_usec;
}
}
boost::unit_test::test_suite* init_unit_test_suite(int argc, char* argv[]) {
// Parse arguments
Options options;
parse_args(argc, argv, &options);
initrand(options.seed);
boost::unit_test::test_suite* suite =
&boost::unit_test::framework::master_test_suite();
suite->p_name.value = "TransportTest";
TransportTestGen transport_test_generator(suite, options.sizeMultiplier);
transport_test_generator.generate();
return NULL;
}