kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame^] | 1 | import ctypes |
| 2 | import logging |
| 3 | import os.path |
| 4 | from typing import Tuple, List, Iterable, Iterator, Optional, Union |
| 5 | from fractions import Fraction |
| 6 | |
| 7 | import numpy |
| 8 | |
| 9 | from cephlib.numeric import auto_edges2 |
| 10 | |
| 11 | import wally |
| 12 | from .hlstorage import ResultStorage |
| 13 | from .node_interfaces import NodeInfo |
| 14 | from .result_classes import DataSource, TimeSeries, SuiteConfig, JobConfig |
| 15 | from .suits.io.fio import FioJobConfig |
| 16 | from .suits.io.fio_hist import expected_lat_bins |
| 17 | from .utils import unit_conversion_coef |
| 18 | |
| 19 | |
| 20 | logger = logging.getLogger("wally") |
| 21 | |
| 22 | # Separately for each test heatmaps & agg acroos whole time histos: |
| 23 | # * fio latency heatmap for all instances |
| 24 | # * data dev iops across all osd |
| 25 | # * data dev bw across all osd |
| 26 | # * date dev qd across all osd |
| 27 | # * journal dev iops across all osd |
| 28 | # * journal dev bw across all osd |
| 29 | # * journal dev qd across all osd |
| 30 | # * net dev pps across all hosts |
| 31 | # * net dev bps across all hosts |
| 32 | |
| 33 | # Main API's |
| 34 | # get sensors by pattern |
| 35 | # allign values to seconds |
| 36 | # cut ranges for particular test |
| 37 | # transform into 2d histos (either make histos or rebin them) and clip outliers same time |
| 38 | |
| 39 | |
| 40 | AGG_TAG = 'ALL' |
| 41 | |
| 42 | |
| 43 | def find_nodes_by_roles(rstorage: ResultStorage, node_roles: Iterable[str]) -> List[NodeInfo]: |
| 44 | nodes = rstorage.storage.load_list(NodeInfo, 'all_nodes') # type: List[NodeInfo] |
| 45 | node_roles_s = set(node_roles) |
| 46 | return [node for node in nodes if node.roles.intersection(node_roles_s)] |
| 47 | |
| 48 | |
| 49 | def find_all_sensors(rstorage: ResultStorage, |
| 50 | node_roles: Iterable[str], |
| 51 | sensor: str, |
| 52 | metric: str) -> Iterator[TimeSeries]: |
| 53 | all_nodes_rr = "|".join(node.node_id for node in find_nodes_by_roles(rstorage, node_roles)) |
| 54 | all_nodes_rr = "(?P<node>{})".format(all_nodes_rr) |
| 55 | |
| 56 | for path, ds in rstorage.iter_sensors(all_nodes_rr, sensor=sensor, metric=metric): |
| 57 | ts = rstorage.load_sensor(ds) |
| 58 | |
| 59 | # for sensors ts.times is array of pairs - collection_start_at, colelction_finished_at |
| 60 | # to make this array consistent with times in load data second item if each pair is dropped |
| 61 | ts.times = ts.times[::2] |
| 62 | yield ts |
| 63 | |
| 64 | |
| 65 | def find_all_series(rstorage: ResultStorage, suite: SuiteConfig, job: JobConfig, metric: str) -> Iterator[TimeSeries]: |
| 66 | "Iterated over selected metric for all nodes for given Suite/job" |
| 67 | return rstorage.iter_ts(suite, job, metric=metric) |
| 68 | |
| 69 | |
| 70 | def get_aggregated(rstorage: ResultStorage, suite: SuiteConfig, job: FioJobConfig, metric: str) -> TimeSeries: |
| 71 | "Sum selected metric for all nodes for given Suite/job" |
| 72 | |
| 73 | tss = list(find_all_series(rstorage, suite, job, metric)) |
| 74 | |
| 75 | if len(tss) == 0: |
| 76 | raise NameError("Can't found any TS for {},{},{}".format(suite, job, metric)) |
| 77 | |
| 78 | ds = DataSource(suite_id=suite.storage_id, |
| 79 | job_id=job.storage_id, |
| 80 | node_id=AGG_TAG, |
| 81 | sensor='fio', |
| 82 | dev=AGG_TAG, |
| 83 | metric=metric, |
| 84 | tag='csv') |
| 85 | |
| 86 | agg_ts = TimeSeries(metric, |
| 87 | raw=None, |
| 88 | source=ds, |
| 89 | data=numpy.zeros(tss[0].data.shape, dtype=tss[0].data.dtype), |
| 90 | times=tss[0].times.copy(), |
| 91 | units=tss[0].units, |
| 92 | histo_bins=tss[0].histo_bins, |
| 93 | time_units=tss[0].time_units) |
| 94 | |
| 95 | for ts in tss: |
| 96 | if metric == 'lat' and (len(ts.data.shape) != 2 or ts.data.shape[1] != expected_lat_bins): |
| 97 | msg = "Sensor {}.{} on node %s has shape={}. Can only process sensors with shape=[X, {}].".format( |
| 98 | ts.source.dev, ts.source.sensor, ts.source.node_id, ts.data.shape, expected_lat_bins) |
| 99 | logger.error(msg) |
| 100 | raise ValueError(msg) |
| 101 | |
| 102 | if metric != 'lat' and len(ts.data.shape) != 1: |
| 103 | msg = "Sensor {}.{} on node {} has shape={}. Can only process 1D sensors.".format( |
| 104 | ts.source.dev, ts.source.sensor, ts.source.node_id, ts.data.shape) |
| 105 | logger.error(msg) |
| 106 | raise ValueError(msg) |
| 107 | |
| 108 | # TODO: match times on different ts |
| 109 | agg_ts.data += ts.data |
| 110 | |
| 111 | return agg_ts |
| 112 | |
| 113 | |
| 114 | interpolated_cache = {} |
| 115 | |
| 116 | |
| 117 | def interpolate_ts_on_seconds_border(ts: TimeSeries, nc: bool = False) -> TimeSeries: |
| 118 | "Interpolate time series to values on seconds borders" |
| 119 | |
| 120 | if not nc and ts.source.tpl in interpolated_cache: |
| 121 | return interpolated_cache[ts.source.tpl] |
| 122 | |
| 123 | assert len(ts.times) == len(ts.data), "Time(={}) and data(={}) sizes doesn't equal for {!s}"\ |
| 124 | .format(len(ts.times), len(ts.data), ts.source) |
| 125 | |
| 126 | rcoef = 1 / unit_conversion_coef(ts.time_units, 's') # type: Union[int, Fraction] |
| 127 | |
| 128 | if isinstance(rcoef, Fraction): |
| 129 | assert rcoef.denominator == 1, "Incorrect conversion coef {!r}".format(rcoef) |
| 130 | rcoef = rcoef.numerator |
| 131 | |
| 132 | assert rcoef >= 1 and isinstance(rcoef, int), "Incorrect conversion coef {!r}".format(rcoef) |
| 133 | coef = int(rcoef) # make typechecker happy |
| 134 | |
| 135 | # round to seconds border |
| 136 | begin = int(ts.times[0] / coef + 1) * coef |
| 137 | end = int(ts.times[-1] / coef) * coef |
| 138 | |
| 139 | # current real data time chunk begin time |
| 140 | edge_it = iter(ts.times) |
| 141 | |
| 142 | # current real data value |
| 143 | val_it = iter(ts.data) |
| 144 | |
| 145 | # result array, cumulative value per second |
| 146 | result = numpy.empty([(end - begin) // coef], dtype=ts.data.dtype) |
| 147 | idx = 0 |
| 148 | curr_summ = 0 |
| 149 | |
| 150 | # end of current time slot |
| 151 | results_cell_ends = begin + coef |
| 152 | |
| 153 | # hack to unify looping |
| 154 | real_data_end = next(edge_it) |
| 155 | while results_cell_ends <= end: |
| 156 | real_data_start = real_data_end |
| 157 | real_data_end = next(edge_it) |
| 158 | real_val_left = next(val_it) |
| 159 | |
| 160 | # real data "speed" for interval [real_data_start, real_data_end] |
| 161 | real_val_ps = float(real_val_left) / (real_data_end - real_data_start) |
| 162 | |
| 163 | while real_data_end >= results_cell_ends and results_cell_ends <= end: |
| 164 | # part of current real value, which is fit into current result cell |
| 165 | curr_real_chunk = int((results_cell_ends - real_data_start) * real_val_ps) |
| 166 | |
| 167 | # calculate rest of real data for next result cell |
| 168 | real_val_left -= curr_real_chunk |
| 169 | result[idx] = curr_summ + curr_real_chunk |
| 170 | idx += 1 |
| 171 | curr_summ = 0 |
| 172 | |
| 173 | # adjust real data start time |
| 174 | real_data_start = results_cell_ends |
| 175 | results_cell_ends += coef |
| 176 | |
| 177 | # don't lost any real data |
| 178 | curr_summ += real_val_left |
| 179 | |
| 180 | assert idx == len(result), "Wrong output array size - idx(={}) != len(result)(={})".format(idx, len(result)) |
| 181 | |
| 182 | res_ts = TimeSeries(ts.name, None, result, |
| 183 | times=int(begin // coef) + numpy.arange(idx, dtype=ts.times.dtype), |
| 184 | units=ts.units, |
| 185 | time_units='s', |
| 186 | source=ts.source(), |
| 187 | histo_bins=ts.histo_bins) |
| 188 | |
| 189 | if not nc: |
| 190 | interpolated_cache[ts.source.tpl] = res_ts |
| 191 | |
| 192 | return res_ts |
| 193 | |
| 194 | |
| 195 | c_interp_func = None |
| 196 | cdll = None |
| 197 | |
| 198 | |
| 199 | def c_interpolate_ts_on_seconds_border(ts: TimeSeries, nc: bool = False) -> TimeSeries: |
| 200 | "Interpolate time series to values on seconds borders" |
| 201 | |
| 202 | if not nc and ts.source.tpl in interpolated_cache: |
| 203 | return interpolated_cache[ts.source.tpl] |
| 204 | |
| 205 | assert len(ts.times) == len(ts.data), "Time(={}) and data(={}) sizes doesn't equal for {!s}"\ |
| 206 | .format(len(ts.times), len(ts.data), ts.source) |
| 207 | |
| 208 | rcoef = 1 / unit_conversion_coef(ts.time_units, 's') # type: Union[int, Fraction] |
| 209 | |
| 210 | if isinstance(rcoef, Fraction): |
| 211 | assert rcoef.denominator == 1, "Incorrect conversion coef {!r}".format(rcoef) |
| 212 | rcoef = rcoef.numerator |
| 213 | |
| 214 | assert rcoef >= 1 and isinstance(rcoef, int), "Incorrect conversion coef {!r}".format(rcoef) |
| 215 | coef = int(rcoef) # make typechecker happy |
| 216 | |
| 217 | global cdll |
| 218 | global c_interp_func |
| 219 | uint64_p = ctypes.POINTER(ctypes.c_uint64) |
| 220 | |
| 221 | if c_interp_func is None: |
| 222 | dirname = os.path.dirname(os.path.dirname(wally.__file__)) |
| 223 | path = os.path.join(dirname, 'clib', 'libwally.so') |
| 224 | cdll = ctypes.CDLL(path) |
| 225 | c_interp_func = cdll.interpolate_ts_on_seconds_border_v2 |
| 226 | c_interp_func.argtypes = [ |
| 227 | ctypes.c_uint, # input_size |
| 228 | ctypes.c_uint, # output_size |
| 229 | uint64_p, # times |
| 230 | uint64_p, # values |
| 231 | ctypes.c_uint, # time_scale_coef |
| 232 | uint64_p, # output |
| 233 | ] |
| 234 | c_interp_func.restype = None |
| 235 | |
| 236 | assert ts.data.dtype.name == 'uint64', "Data dtype for {}=={} != uint64".format(ts.source, ts.data.dtype.name) |
| 237 | assert ts.times.dtype.name == 'uint64', "Time dtype for {}=={} != uint64".format(ts.source, ts.times.dtype.name) |
| 238 | |
| 239 | output_sz = int(ts.times[-1]) // coef - int(ts.times[0]) // coef + 2 |
| 240 | # print("output_sz =", output_sz, "coef =", coef) |
| 241 | result = numpy.zeros(output_sz, dtype=ts.data.dtype.name) |
| 242 | |
| 243 | c_interp_func(ts.data.size, |
| 244 | output_sz, |
| 245 | ts.times.ctypes.data_as(uint64_p), |
| 246 | ts.data.ctypes.data_as(uint64_p), |
| 247 | coef, |
| 248 | result.ctypes.data_as(uint64_p)) |
| 249 | |
| 250 | res_ts = TimeSeries(ts.name, None, result, |
| 251 | times=int(ts.times[0] // coef) + numpy.arange(output_sz, dtype=ts.times.dtype), |
| 252 | units=ts.units, |
| 253 | time_units='s', |
| 254 | source=ts.source(), |
| 255 | histo_bins=ts.histo_bins) |
| 256 | |
| 257 | if not nc: |
| 258 | interpolated_cache[ts.source.tpl] = res_ts |
| 259 | return res_ts |
| 260 | |
| 261 | |
| 262 | def get_ts_for_time_range(ts: TimeSeries, time_range: Tuple[int, int]) -> TimeSeries: |
| 263 | """Return sensor values for given node for given period. Return per second estimated values array |
| 264 | Raise an error if required range is not full covered by data in storage""" |
| 265 | |
| 266 | assert ts.time_units == 's', "{} != s for {!s}".format(ts.time_units, ts.source) |
| 267 | assert len(ts.times) == len(ts.data), "Time(={}) and data(={}) sizes doesn't equal for {!s}"\ |
| 268 | .format(len(ts.times), len(ts.data), ts.source) |
| 269 | |
| 270 | if time_range[0] < ts.times[0] or time_range[1] > ts.times[-1]: |
| 271 | raise AssertionError(("Incorrect data for get_sensor - time_range={!r}, collected_at=[{}, ..., {}]," + |
| 272 | "sensor = {}_{}.{}.{}").format(time_range, ts.times[0], ts.times[-1], |
| 273 | ts.source.node_id, ts.source.sensor, ts.source.dev, |
| 274 | ts.source.metric)) |
| 275 | idx1, idx2 = numpy.searchsorted(ts.times, time_range) |
| 276 | return TimeSeries(ts.name, None, |
| 277 | ts.data[idx1:idx2], |
| 278 | times=ts.times[idx1:idx2], |
| 279 | units=ts.units, |
| 280 | time_units=ts.time_units, |
| 281 | source=ts.source, |
| 282 | histo_bins=ts.histo_bins) |
| 283 | |
| 284 | |
| 285 | def make_2d_histo(tss: List[TimeSeries], |
| 286 | outliers_range: Tuple[float, float] = (0.02, 0.98), |
| 287 | bins_count: int = 20, |
| 288 | log_bins: bool = False) -> TimeSeries: |
| 289 | |
| 290 | # validate input data |
| 291 | for ts in tss: |
| 292 | assert len(ts.times) == len(ts.data), "Time(={}) and data(={}) sizes doesn't equal for {!s}"\ |
| 293 | .format(len(ts.times), len(ts.data), ts.source) |
| 294 | assert ts.time_units == 's', "All arrays should have the same data units" |
| 295 | assert ts.units == tss[0].units, "All arrays should have the same data units" |
| 296 | assert ts.data.shape == tss[0].data.shape, "All arrays should have the same data size" |
| 297 | assert len(ts.data.shape) == 1, "All arrays should be 1d" |
| 298 | |
| 299 | whole_arr = numpy.concatenate([ts.data for ts in tss]) |
| 300 | whole_arr.shape = [len(tss), -1] |
| 301 | |
| 302 | if outliers_range is not None: |
| 303 | max_vl, begin, end, min_vl = numpy.percentile(whole_arr, |
| 304 | [0, outliers_range[0] * 100, outliers_range[1] * 100, 100]) |
| 305 | bins_edges = auto_edges2(begin, end, bins=bins_count, log_space=log_bins) |
| 306 | fixed_bins_edges = bins_edges.copy() |
| 307 | fixed_bins_edges[0] = begin |
| 308 | fixed_bins_edges[-1] = end |
| 309 | else: |
| 310 | begin, end = numpy.percentile(whole_arr, [0, 100]) |
| 311 | bins_edges = auto_edges2(begin, end, bins=bins_count, log_space=log_bins) |
| 312 | fixed_bins_edges = bins_edges |
| 313 | |
| 314 | res_data = numpy.concatenate(numpy.histogram(column, fixed_bins_edges) for column in whole_arr.T) |
| 315 | res_data.shape = (len(tss), -1) |
| 316 | res = TimeSeries(name=tss[0].name, |
| 317 | raw=None, |
| 318 | data=res_data, |
| 319 | times=tss[0].times, |
| 320 | units=tss[0].units, |
| 321 | source=tss[0].source, |
| 322 | time_units=tss[0].time_units, |
| 323 | histo_bins=bins_edges) |
| 324 | return res |
| 325 | |
| 326 | |
| 327 | def aggregate_histograms(tss: List[TimeSeries], |
| 328 | outliers_range: Tuple[float, float] = (0.02, 0.98), |
| 329 | bins_count: int = 20, |
| 330 | log_bins: bool = False) -> TimeSeries: |
| 331 | |
| 332 | # validate input data |
| 333 | for ts in tss: |
| 334 | assert len(ts.times) == len(ts.data), "Need to use stripped time" |
| 335 | assert ts.time_units == 's', "All arrays should have the same data units" |
| 336 | assert ts.units == tss[0].units, "All arrays should have the same data units" |
| 337 | assert ts.data.shape == tss[0].data.shape, "All arrays should have the same data size" |
| 338 | assert len(ts.data.shape) == 2, "All arrays should be 2d" |
| 339 | assert ts.histo_bins is not None, "All arrays should be 2d" |
| 340 | |
| 341 | whole_arr = numpy.concatenate([ts.data for ts in tss]) |
| 342 | whole_arr.shape = [len(tss), -1] |
| 343 | |
| 344 | max_val = whole_arr.min() |
| 345 | min_val = whole_arr.max() |
| 346 | |
| 347 | if outliers_range is not None: |
| 348 | begin, end = numpy.percentile(whole_arr, [outliers_range[0] * 100, outliers_range[1] * 100]) |
| 349 | else: |
| 350 | begin = min_val |
| 351 | end = max_val |
| 352 | |
| 353 | bins_edges = auto_edges2(begin, end, bins=bins_count, log_space=log_bins) |
| 354 | |
| 355 | if outliers_range is not None: |
| 356 | fixed_bins_edges = bins_edges.copy() |
| 357 | fixed_bins_edges[0] = begin |
| 358 | fixed_bins_edges[-1] = end |
| 359 | else: |
| 360 | fixed_bins_edges = bins_edges |
| 361 | |
| 362 | res_data = numpy.concatenate(numpy.histogram(column, fixed_bins_edges) for column in whole_arr.T) |
| 363 | res_data.shape = (len(tss), -1) |
| 364 | return TimeSeries(name=tss[0].name, |
| 365 | raw=None, |
| 366 | data=res_data, |
| 367 | times=tss[0].times, |
| 368 | units=tss[0].units, |
| 369 | source=tss[0].source, |
| 370 | time_units=tss[0].time_units, |
| 371 | histo_bins=fixed_bins_edges) |
| 372 | |
| 373 | |
| 374 | def summ_sensors(rstorage: ResultStorage, |
| 375 | roles: List[str], |
| 376 | sensor: str, |
| 377 | metric: str, |
| 378 | time_range: Tuple[int, int]) -> Optional[TimeSeries]: |
| 379 | |
| 380 | res = None # type: Optional[TimeSeries] |
| 381 | for node in find_nodes_by_roles(rstorage, roles): |
| 382 | for _, ds in rstorage.iter_sensors(node_id=node.node_id, sensor=sensor, metric=metric): |
| 383 | data = rstorage.load_sensor(ds) |
| 384 | data = c_interpolate_ts_on_seconds_border(data) |
| 385 | data = get_ts_for_time_range(data, time_range) |
| 386 | if res is None: |
| 387 | res = data |
| 388 | res.data = res.data.copy() |
| 389 | else: |
| 390 | res.data += data.data |
| 391 | return res |
| 392 | |
| 393 | |
| 394 | def find_sensors_to_2d(rstorage: ResultStorage, |
| 395 | roles: List[str], |
| 396 | sensor: str, |
| 397 | devs: List[str], |
| 398 | metric: str, |
| 399 | time_range: Tuple[int, int]) -> numpy.ndarray: |
| 400 | |
| 401 | res = [] # type: List[TimeSeries] |
| 402 | for node in find_nodes_by_roles(rstorage, roles): |
| 403 | for dev in devs: |
| 404 | for _, ds in rstorage.iter_sensors(node_id=node.node_id, sensor=sensor, dev=dev, metric=metric): |
| 405 | data = rstorage.load_sensor(ds) |
| 406 | data = c_interpolate_ts_on_seconds_border(data) |
| 407 | data = get_ts_for_time_range(data, time_range) |
| 408 | res.append(data.data) |
| 409 | res2d = numpy.concatenate(res) |
| 410 | res2d.shape = ((len(res), -1)) |
| 411 | return res2d |