koder aka kdanilov | 6c49106 | 2015-04-09 22:33:13 +0300 | [diff] [blame] | 1 | import math |
| 2 | import itertools |
koder aka kdanilov | cff7b2e | 2015-04-18 20:48:15 +0300 | [diff] [blame] | 3 | |
| 4 | try: |
| 5 | from numpy import array, linalg |
| 6 | from scipy.optimize import leastsq |
| 7 | from numpy.polynomial.chebyshev import chebfit, chebval |
| 8 | except ImportError: |
| 9 | no_numpy = True |
koder aka kdanilov | 6c49106 | 2015-04-09 22:33:13 +0300 | [diff] [blame] | 10 | |
| 11 | |
| 12 | def med_dev(vals): |
| 13 | med = sum(vals) / len(vals) |
| 14 | dev = ((sum(abs(med - i) ** 2.0 for i in vals) / len(vals)) ** 0.5) |
| 15 | return med, dev |
| 16 | |
| 17 | |
koder aka kdanilov | e87ae65 | 2015-04-20 02:14:35 +0300 | [diff] [blame] | 18 | def round_3_digit(val): |
| 19 | return round_deviation((val, val / 10.0))[0] |
| 20 | |
| 21 | |
koder aka kdanilov | 6c49106 | 2015-04-09 22:33:13 +0300 | [diff] [blame] | 22 | def round_deviation(med_dev): |
| 23 | med, dev = med_dev |
| 24 | |
| 25 | if dev < 1E-7: |
| 26 | return med_dev |
| 27 | |
| 28 | dev_div = 10.0 ** (math.floor(math.log10(dev)) - 1) |
| 29 | dev = int(dev / dev_div) * dev_div |
| 30 | med = int(med / dev_div) * dev_div |
| 31 | return (type(med_dev[0])(med), |
| 32 | type(med_dev[1])(dev)) |
| 33 | |
| 34 | |
| 35 | def groupby_globally(data, key_func): |
| 36 | grouped = {} |
| 37 | grouped_iter = itertools.groupby(data, key_func) |
| 38 | |
| 39 | for (bs, cache_tp, act, conc), curr_data_it in grouped_iter: |
| 40 | key = (bs, cache_tp, act, conc) |
| 41 | grouped.setdefault(key, []).extend(curr_data_it) |
| 42 | |
| 43 | return grouped |
| 44 | |
| 45 | |
| 46 | def approximate_curve(x, y, xnew, curved_coef): |
| 47 | """returns ynew - y values of some curve approximation""" |
koder aka kdanilov | cff7b2e | 2015-04-18 20:48:15 +0300 | [diff] [blame] | 48 | if no_numpy: |
| 49 | return None |
| 50 | |
koder aka kdanilov | 6c49106 | 2015-04-09 22:33:13 +0300 | [diff] [blame] | 51 | return chebval(xnew, chebfit(x, y, curved_coef)) |
| 52 | |
| 53 | |
| 54 | def approximate_line(x, y, xnew, relative_dist=False): |
Ved-vampir | 0316644 | 2015-04-10 17:28:23 +0300 | [diff] [blame] | 55 | """ x, y - test data, xnew - dots, where we want find approximation |
| 56 | if not relative_dist distance = y - newy |
| 57 | returns ynew - y values of linear approximation""" |
koder aka kdanilov | 66839a9 | 2015-04-11 13:22:31 +0300 | [diff] [blame] | 58 | |
koder aka kdanilov | cff7b2e | 2015-04-18 20:48:15 +0300 | [diff] [blame] | 59 | if no_numpy: |
| 60 | return None |
| 61 | |
Ved-vampir | 0316644 | 2015-04-10 17:28:23 +0300 | [diff] [blame] | 62 | # convert to numpy.array (don't work without it) |
| 63 | ox = array(x) |
| 64 | oy = array(y) |
koder aka kdanilov | 66839a9 | 2015-04-11 13:22:31 +0300 | [diff] [blame] | 65 | |
Ved-vampir | 0316644 | 2015-04-10 17:28:23 +0300 | [diff] [blame] | 66 | # set approximation function |
koder aka kdanilov | 66839a9 | 2015-04-11 13:22:31 +0300 | [diff] [blame] | 67 | def func_line(tpl, x): |
| 68 | return tpl[0] * x + tpl[1] |
| 69 | |
| 70 | def error_func_rel(tpl, x, y): |
| 71 | return 1.0 - y / func_line(tpl, x) |
| 72 | |
| 73 | def error_func_abs(tpl, x, y): |
| 74 | return y - func_line(tpl, x) |
| 75 | |
Ved-vampir | 0316644 | 2015-04-10 17:28:23 +0300 | [diff] [blame] | 76 | # choose distance mode |
koder aka kdanilov | 66839a9 | 2015-04-11 13:22:31 +0300 | [diff] [blame] | 77 | error_func = error_func_rel if relative_dist else error_func_abs |
| 78 | |
| 79 | tpl_initial = tuple(linalg.solve([[ox[0], 1.0], [ox[1], 1.0]], |
| 80 | oy[:2])) |
| 81 | |
Ved-vampir | 0316644 | 2015-04-10 17:28:23 +0300 | [diff] [blame] | 82 | # find line |
koder aka kdanilov | 66839a9 | 2015-04-11 13:22:31 +0300 | [diff] [blame] | 83 | tpl_final, success = leastsq(error_func, |
| 84 | tpl_initial[:], |
| 85 | args=(ox, oy)) |
| 86 | |
Ved-vampir | 0316644 | 2015-04-10 17:28:23 +0300 | [diff] [blame] | 87 | # if error |
| 88 | if success not in range(1, 5): |
| 89 | raise ValueError("No line for this dots") |
koder aka kdanilov | 66839a9 | 2015-04-11 13:22:31 +0300 | [diff] [blame] | 90 | |
Ved-vampir | 0316644 | 2015-04-10 17:28:23 +0300 | [diff] [blame] | 91 | # return new dots |
koder aka kdanilov | 66839a9 | 2015-04-11 13:22:31 +0300 | [diff] [blame] | 92 | return func_line(tpl_final, array(xnew)) |
koder aka kdanilov | 6c49106 | 2015-04-09 22:33:13 +0300 | [diff] [blame] | 93 | |
| 94 | |
| 95 | def difference(y, ynew): |
| 96 | """returns average and maximum relative and |
Ved-vampir | 0316644 | 2015-04-10 17:28:23 +0300 | [diff] [blame] | 97 | absolute differences between y and ynew |
| 98 | result may contain None values for y = 0 |
| 99 | return value - tuple: |
| 100 | [(abs dif, rel dif) * len(y)], |
| 101 | (abs average, abs max), |
| 102 | (rel average, rel max)""" |
koder aka kdanilov | 66839a9 | 2015-04-11 13:22:31 +0300 | [diff] [blame] | 103 | |
| 104 | abs_dlist = [] |
| 105 | rel_dlist = [] |
| 106 | |
Ved-vampir | 0316644 | 2015-04-10 17:28:23 +0300 | [diff] [blame] | 107 | for y1, y2 in zip(y, ynew): |
| 108 | # absolute |
koder aka kdanilov | 66839a9 | 2015-04-11 13:22:31 +0300 | [diff] [blame] | 109 | abs_dlist.append(y1 - y2) |
Ved-vampir | 0316644 | 2015-04-10 17:28:23 +0300 | [diff] [blame] | 110 | |
koder aka kdanilov | 66839a9 | 2015-04-11 13:22:31 +0300 | [diff] [blame] | 111 | if y1 > 1E-6: |
| 112 | rel_dlist.append(abs(abs_dlist[-1] / y1)) |
| 113 | else: |
| 114 | raise ZeroDivisionError("{0!r} is too small".format(y1)) |
| 115 | |
| 116 | da_avg = sum(abs_dlist) / len(abs_dlist) |
| 117 | dr_avg = sum(rel_dlist) / len(rel_dlist) |
| 118 | |
| 119 | return (zip(abs_dlist, rel_dlist), |
| 120 | (da_avg, max(abs_dlist)), (dr_avg, max(rel_dlist)) |
| 121 | ) |
koder aka kdanilov | 6c49106 | 2015-04-09 22:33:13 +0300 | [diff] [blame] | 122 | |
| 123 | |
| 124 | def calculate_distribution_properties(data): |
| 125 | """chi, etc""" |
| 126 | |
| 127 | |
| 128 | def minimal_measurement_amount(data, max_diff, req_probability): |
| 129 | """ |
| 130 | should returns amount of measurements to get results (avg and deviation) |
| 131 | with error less, that max_diff in at least req_probability% cases |
| 132 | """ |