koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1 | import os |
koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 2 | import abc |
koder aka kdanilov | a047e1b | 2015-04-21 23:16:59 +0300 | [diff] [blame] | 3 | import logging |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 4 | import warnings |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 5 | from io import BytesIO |
| 6 | from functools import wraps |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 7 | from collections import defaultdict |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 8 | from typing import Dict, Any, Iterator, Tuple, cast, List, Callable, Set, Optional, Union |
koder aka kdanilov | cff7b2e | 2015-04-18 20:48:15 +0300 | [diff] [blame] | 9 | |
koder aka kdanilov | ffaf48d | 2016-12-27 02:25:29 +0200 | [diff] [blame] | 10 | import numpy |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 11 | import scipy.stats |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 12 | import matplotlib.style |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 13 | from matplotlib.figure import Figure |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 14 | import matplotlib.pyplot as plt |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 15 | from matplotlib import gridspec |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 16 | from statsmodels.tsa.stattools import adfuller |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 17 | |
| 18 | from cephlib.common import float2str |
| 19 | from cephlib.plot import plot_hmap_with_y_histo, hmap_from_2d |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 20 | import xmlbuilder3 |
koder aka kdanilov | be8f89f | 2015-04-28 14:51:51 +0300 | [diff] [blame] | 21 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 22 | import wally |
koder aka kdanilov | ffaf48d | 2016-12-27 02:25:29 +0200 | [diff] [blame] | 23 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 24 | from . import html |
koder aka kdanilov | 39e449e | 2016-12-17 15:15:26 +0200 | [diff] [blame] | 25 | from .stage import Stage, StepOrder |
| 26 | from .test_run_class import TestRun |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 27 | from .hlstorage import ResultStorage |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 28 | from .utils import b2ssize, b2ssize_10, STORAGE_ROLES, unit_conversion_coef |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 29 | from .statistic import (calc_norm_stat_props, calc_histo_stat_props, moving_average, moving_dev, |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 30 | hist_outliers_perc, find_ouliers_ts, approximate_curve) |
| 31 | from .result_classes import (StatProps, DataSource, TimeSeries, NormStatProps, HistoStatProps, SuiteConfig) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 32 | from .suits.io.fio import FioTest, FioJobConfig |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 33 | from .suits.io.fio_job import FioJobParams |
| 34 | from .suits.job import JobConfig |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 35 | from .data_selectors import (get_aggregated, AGG_TAG, summ_sensors, find_sensors_to_2d, find_nodes_by_roles, |
| 36 | get_ts_for_time_range) |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 37 | |
| 38 | |
| 39 | with warnings.catch_warnings(): |
| 40 | warnings.simplefilter("ignore") |
| 41 | import seaborn |
koder aka kdanilov | cff7b2e | 2015-04-18 20:48:15 +0300 | [diff] [blame] | 42 | |
koder aka kdanilov | 4a510ee | 2015-04-21 18:50:42 +0300 | [diff] [blame] | 43 | |
koder aka kdanilov | 962ee5f | 2016-12-19 02:40:08 +0200 | [diff] [blame] | 44 | logger = logging.getLogger("wally") |
koder aka kdanilov | a047e1b | 2015-04-21 23:16:59 +0300 | [diff] [blame] | 45 | |
| 46 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 47 | # ---------------- CONSTS --------------------------------------------------------------------------------------------- |
koder aka kdanilov | 39e449e | 2016-12-17 15:15:26 +0200 | [diff] [blame] | 48 | |
koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 49 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 50 | DEBUG = False |
koder aka kdanilov | 39e449e | 2016-12-17 15:15:26 +0200 | [diff] [blame] | 51 | |
koder aka kdanilov | 39e449e | 2016-12-17 15:15:26 +0200 | [diff] [blame] | 52 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 53 | # ---------------- PROFILES ------------------------------------------------------------------------------------------ |
| 54 | |
| 55 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 56 | # this is default values, real values is loaded from config |
| 57 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 58 | class ColorProfile: |
| 59 | primary_color = 'b' |
| 60 | suppl_color1 = 'teal' |
| 61 | suppl_color2 = 'magenta' |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 62 | suppl_color3 = 'orange' |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 63 | box_color = 'y' |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 64 | err_color = 'red' |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 65 | |
| 66 | noise_alpha = 0.3 |
| 67 | subinfo_alpha = 0.7 |
| 68 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 69 | imshow_colormap = None # type: str |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 70 | hmap_cmap = "Blues" |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 71 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 72 | |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 73 | default_format = 'svg' |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 74 | io_chart_format = 'svg' |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 75 | |
| 76 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 77 | class StyleProfile: |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 78 | default_style = 'seaborn-white' |
| 79 | io_chart_style = 'classic' |
| 80 | |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 81 | dpi = 80 |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 82 | grid = True |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 83 | tide_layout = False |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 84 | hist_boxes = 10 |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 85 | hist_lat_boxes = 25 |
| 86 | hm_hist_bins_count = 25 |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 87 | hm_x_slots = 25 |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 88 | min_points_for_dev = 5 |
| 89 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 90 | x_label_rotation = 35 |
| 91 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 92 | dev_range_x = 2.0 |
| 93 | dev_perc = 95 |
| 94 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 95 | point_shape = 'o' |
| 96 | err_point_shape = '*' |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 97 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 98 | avg_range = 20 |
| 99 | approx_average = True |
| 100 | |
| 101 | curve_approx_level = 6 |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 102 | curve_approx_points = 100 |
| 103 | assert avg_range >= min_points_for_dev |
| 104 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 105 | # figure size in inches |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 106 | figsize = (8, 4) |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 107 | figsize_long = (8, 4) |
| 108 | qd_chart_inches = (16, 9) |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 109 | |
| 110 | subplot_adjust_r = 0.75 |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 111 | subplot_adjust_r_no_legend = 0.9 |
| 112 | title_font_size = 12 |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 113 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 114 | extra_io_spine = True |
| 115 | |
| 116 | legend_for_eng = True |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 117 | # heatmap_interpolation = '1d' |
| 118 | heatmap_interpolation = None |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 119 | heatmap_interpolation_points = 300 |
| 120 | outliers_q_nd = 3.0 |
| 121 | outliers_hide_q_nd = 4.0 |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 122 | outliers_lat = (0.01, 0.9) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 123 | |
| 124 | violin_instead_of_box = True |
| 125 | violin_point_count = 30000 |
| 126 | |
| 127 | heatmap_colorbar = False |
| 128 | |
| 129 | min_iops_vs_qd_jobs = 3 |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 130 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 131 | qd_bins = [0, 1, 2, 4, 6, 8, 12, 16, 20, 26, 32, 40, 48, 56, 64, 96, 128] |
| 132 | iotime_bins = list(range(0, 1030, 50)) |
| 133 | block_size_bins = [0, 2, 4, 8, 16, 32, 48, 64, 96, 128, 192, 256, 384, 512, 1024, 2048] |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 134 | large_blocks = 256 |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 135 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 136 | |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 137 | DefColorProfile = ColorProfile() |
| 138 | DefStyleProfile = StyleProfile() |
| 139 | |
| 140 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 141 | # ---------------- STRUCTS ------------------------------------------------------------------------------------------- |
koder aka kdanilov | 39e449e | 2016-12-17 15:15:26 +0200 | [diff] [blame] | 142 | |
koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 143 | |
| 144 | # TODO: need to be revised, have to user StatProps fields instead |
| 145 | class StoragePerfSummary: |
| 146 | def __init__(self, name: str) -> None: |
| 147 | self.direct_iops_r_max = 0 # type: int |
| 148 | self.direct_iops_w_max = 0 # type: int |
| 149 | |
| 150 | # 64 used instead of 4k to faster feed caches |
| 151 | self.direct_iops_w64_max = 0 # type: int |
| 152 | |
| 153 | self.rws4k_10ms = 0 # type: int |
| 154 | self.rws4k_30ms = 0 # type: int |
| 155 | self.rws4k_100ms = 0 # type: int |
| 156 | self.bw_write_max = 0 # type: int |
| 157 | self.bw_read_max = 0 # type: int |
| 158 | |
| 159 | self.bw = None # type: float |
| 160 | self.iops = None # type: float |
| 161 | self.lat = None # type: float |
| 162 | self.lat_50 = None # type: float |
| 163 | self.lat_95 = None # type: float |
| 164 | |
| 165 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 166 | class IOSummary: |
| 167 | def __init__(self, |
| 168 | qd: int, |
| 169 | block_size: int, |
| 170 | nodes_count:int, |
| 171 | bw: NormStatProps, |
| 172 | lat: HistoStatProps) -> None: |
| 173 | |
| 174 | self.qd = qd |
| 175 | self.nodes_count = nodes_count |
| 176 | self.block_size = block_size |
| 177 | |
| 178 | self.bw = bw |
| 179 | self.lat = lat |
| 180 | |
| 181 | |
| 182 | # -------------- AGGREGATION AND STAT FUNCTIONS ---------------------------------------------------------------------- |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 183 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 184 | iosum_cache = {} # type: Dict[Tuple[str, str]] |
| 185 | |
| 186 | |
| 187 | def make_iosum(rstorage: ResultStorage, suite: SuiteConfig, job: FioJobConfig, nc: bool = False) -> IOSummary: |
| 188 | key = (suite.storage_id, job.storage_id) |
| 189 | if not nc and key in iosum_cache: |
| 190 | return iosum_cache[key] |
| 191 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 192 | lat = get_aggregated(rstorage, suite, job, "lat") |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 193 | io = get_aggregated(rstorage, suite, job, "bw") |
| 194 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 195 | res = IOSummary(job.qd, |
| 196 | nodes_count=len(suite.nodes_ids), |
| 197 | block_size=job.bsize, |
| 198 | lat=calc_histo_stat_props(lat, rebins_count=StyleProfile.hist_boxes), |
| 199 | bw=calc_norm_stat_props(io, StyleProfile.hist_boxes)) |
| 200 | |
| 201 | if not nc: |
| 202 | iosum_cache[key] = res |
| 203 | |
| 204 | return res |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 205 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 206 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 207 | def is_sensor_numarray(sensor: str, metric: str) -> bool: |
| 208 | """Returns True if sensor provides one-dimension array of numeric values. One number per one measurement.""" |
| 209 | return True |
| 210 | |
| 211 | |
| 212 | LEVEL_SENSORS = {("block-io", "io_queue"), |
| 213 | ("system-cpu", "procs_blocked"), |
| 214 | ("system-cpu", "procs_queue")} |
| 215 | |
| 216 | |
| 217 | def is_level_sensor(sensor: str, metric: str) -> bool: |
| 218 | """Returns True if sensor measure level of any kind, E.g. queue depth.""" |
| 219 | return (sensor, metric) in LEVEL_SENSORS |
| 220 | |
| 221 | |
| 222 | def is_delta_sensor(sensor: str, metric: str) -> bool: |
| 223 | """Returns True if sensor provides deltas for cumulative value. E.g. io completed in given period""" |
| 224 | return not is_level_sensor(sensor, metric) |
| 225 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 226 | |
| 227 | cpu_load_cache = {} # type: Dict[Tuple[int, Tuple[str, ...], Tuple[int, int]], Dict[str, TimeSeries]] |
| 228 | |
| 229 | |
| 230 | def get_cluster_cpu_load(rstorage: ResultStorage, roles: List[str], |
| 231 | time_range: Tuple[int, int], nc: bool = False) -> Dict[str, TimeSeries]: |
| 232 | |
| 233 | key = (id(rstorage), tuple(roles), time_range) |
| 234 | if not nc and key in cpu_load_cache: |
| 235 | return cpu_load_cache[key] |
| 236 | |
| 237 | cpu_ts = {} |
| 238 | cpu_metrics = "idle guest iowait sirq nice irq steal sys user".split() |
| 239 | for name in cpu_metrics: |
| 240 | cpu_ts[name] = summ_sensors(rstorage, roles, sensor='system-cpu', metric=name, time_range=time_range) |
| 241 | |
| 242 | it = iter(cpu_ts.values()) |
| 243 | total_over_time = next(it).data.copy() # type: numpy.ndarray |
| 244 | for ts in it: |
| 245 | if ts is not None: |
| 246 | total_over_time += ts.data |
| 247 | |
| 248 | total = cpu_ts['idle'].copy(no_data=True) |
| 249 | total.data = total_over_time |
| 250 | cpu_ts['total'] = total |
| 251 | |
| 252 | if not nc: |
| 253 | cpu_load_cache[key] = cpu_ts |
| 254 | |
| 255 | return cpu_ts |
| 256 | |
| 257 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 258 | # -------------- PLOT HELPERS FUNCTIONS ------------------------------------------------------------------------------ |
| 259 | |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 260 | def get_emb_image(fig: Figure, format: str, **opts) -> bytes: |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 261 | bio = BytesIO() |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 262 | if format == 'svg': |
| 263 | fig.savefig(bio, format='svg', **opts) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 264 | img_start = "<!-- Created with matplotlib (http://matplotlib.org/) -->" |
| 265 | return bio.getvalue().decode("utf8").split(img_start, 1)[1].encode("utf8") |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 266 | else: |
| 267 | fig.savefig(bio, format=format, **opts) |
| 268 | return bio.getvalue() |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 269 | |
| 270 | |
| 271 | def provide_plot(func: Callable[..., None]) -> Callable[..., str]: |
| 272 | @wraps(func) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 273 | def closure1(storage: ResultStorage, |
| 274 | path: DataSource, |
| 275 | *args, **kwargs) -> str: |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 276 | fpath = storage.check_plot_file(path) |
| 277 | if not fpath: |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 278 | format = path.tag.split(".")[-1] |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 279 | fig = plt.figure(figsize=StyleProfile.figsize) |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 280 | plt.style.use(StyleProfile.default_style) |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 281 | func(fig, *args, **kwargs) |
| 282 | fpath = storage.put_plot_file(get_emb_image(fig, format=format, dpi=DefStyleProfile.dpi), path) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 283 | logger.debug("Plot %s saved to %r", path, fpath) |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 284 | plt.close(fig) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 285 | return fpath |
| 286 | return closure1 |
| 287 | |
| 288 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 289 | def apply_style(fig: Figure, title: str, style: StyleProfile, eng: bool = True, |
| 290 | no_legend: bool = False) -> None: |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 291 | |
| 292 | for ax in fig.axes: |
| 293 | ax.grid(style.grid) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 294 | |
| 295 | if (style.legend_for_eng or not eng) and not no_legend: |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 296 | fig.subplots_adjust(right=StyleProfile.subplot_adjust_r) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 297 | legend_location = "center left" |
| 298 | legend_bbox_to_anchor = (1.03, 0.81) |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 299 | for ax in fig.axes: |
| 300 | ax.legend(loc=legend_location, bbox_to_anchor=legend_bbox_to_anchor) |
| 301 | else: |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 302 | fig.subplots_adjust(right=StyleProfile.subplot_adjust_r_no_legend) |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 303 | |
| 304 | if style.tide_layout: |
| 305 | fig.set_tight_layout(True) |
| 306 | |
| 307 | fig.suptitle(title, fontsize=style.title_font_size) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 308 | |
| 309 | |
| 310 | # -------------- PLOT FUNCTIONS -------------------------------------------------------------------------------------- |
| 311 | |
| 312 | |
| 313 | @provide_plot |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 314 | def plot_hist(fig: Figure, title: str, units: str, |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 315 | prop: StatProps, |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 316 | colors: ColorProfile = DefColorProfile, |
| 317 | style: StyleProfile = DefStyleProfile) -> None: |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 318 | |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 319 | ax = fig.add_subplot(111) |
| 320 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 321 | # TODO: unit should came from ts |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 322 | normed_bins = prop.bins_populations / prop.bins_populations.sum() |
| 323 | bar_width = prop.bins_edges[1] - prop.bins_edges[0] |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 324 | ax.bar(prop.bins_edges, normed_bins, color=colors.box_color, width=bar_width, label="Real data") |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 325 | |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 326 | ax.set(xlabel=units, ylabel="Value probability") |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 327 | |
| 328 | dist_plotted = False |
| 329 | if isinstance(prop, NormStatProps): |
| 330 | nprop = cast(NormStatProps, prop) |
| 331 | stats = scipy.stats.norm(nprop.average, nprop.deviation) |
| 332 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 333 | new_edges, step = numpy.linspace(prop.bins_edges[0], prop.bins_edges[-1], |
| 334 | len(prop.bins_edges) * 10, retstep=True) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 335 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 336 | ypoints = stats.cdf(new_edges) * 11 |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 337 | ypoints = [next - prev for (next, prev) in zip(ypoints[1:], ypoints[:-1])] |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 338 | xpoints = (new_edges[1:] + new_edges[:-1]) / 2 |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 339 | |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 340 | ax.plot(xpoints, ypoints, color=colors.primary_color, label="Expected from\nnormal\ndistribution") |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 341 | dist_plotted = True |
| 342 | |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 343 | ax.set_xlim(left=prop.bins_edges[0]) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 344 | if prop.log_bins: |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 345 | ax.set_xscale('log') |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 346 | |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 347 | apply_style(fig, title, style, eng=True, no_legend=not dist_plotted) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 348 | |
| 349 | |
| 350 | @provide_plot |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 351 | def plot_simple_over_time(fig: Figure, |
| 352 | tss: List[Tuple[str, numpy.ndarray]], |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 353 | title: str, |
| 354 | ylabel: str, |
| 355 | xlabel: str = "time, s", |
| 356 | average: bool = False, |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 357 | colors: ColorProfile = DefColorProfile, |
| 358 | style: StyleProfile = DefStyleProfile) -> None: |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 359 | ax = fig.add_subplot(111) |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 360 | for name, arr in tss: |
| 361 | if average: |
| 362 | avg_vals = moving_average(arr, style.avg_range) |
| 363 | if style.approx_average: |
| 364 | time_points = numpy.arange(len(avg_vals)) |
| 365 | avg_vals = approximate_curve(time_points, avg_vals, time_points, style.curve_approx_level) |
| 366 | arr = avg_vals |
| 367 | ax.plot(arr, label=name) |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 368 | ax.set(xlabel=xlabel, ylabel=ylabel) |
| 369 | apply_style(fig, title, style, eng=True) |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 370 | |
| 371 | |
| 372 | @provide_plot |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 373 | def plot_simple_bars(fig: Figure, |
| 374 | title: str, |
| 375 | names: List[str], |
| 376 | values: List[float], |
| 377 | errs: List[float] = None, |
| 378 | colors: ColorProfile = DefColorProfile, |
| 379 | style: StyleProfile = DefStyleProfile) -> None: |
| 380 | |
| 381 | ax = fig.add_subplot(111) |
| 382 | ind = numpy.arange(len(names)) |
| 383 | width = 0.35 |
| 384 | ax.barh(ind, values, width, xerr=errs) |
| 385 | |
| 386 | ax.set_yticks(ind + width / 2) |
| 387 | ax.set_yticklabels(names) |
| 388 | ax.set_xlim(0, max(val + err for val, err in zip(values, errs)) * 1.1) |
| 389 | |
| 390 | apply_style(fig, title, style, no_legend=True) |
| 391 | ax.axvline(x=1.0, color='r', linestyle='--', linewidth=1, alpha=0.5) |
| 392 | fig.subplots_adjust(left=0.2) |
| 393 | |
| 394 | |
| 395 | @provide_plot |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 396 | def plot_hmap_from_2d(fig: Figure, |
| 397 | data2d: numpy.ndarray, |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 398 | title: str, ylabel: str, xlabel: str = 'time, s', bins: numpy.ndarray = None, |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 399 | colors: ColorProfile = DefColorProfile, style: StyleProfile = DefStyleProfile) -> None: |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 400 | fig.set_size_inches(*style.figsize_long) |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 401 | ioq1d, ranges = hmap_from_2d(data2d) |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 402 | ax, _ = plot_hmap_with_y_histo(fig, ioq1d, ranges, bins=bins, cmap=colors.hmap_cmap) |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 403 | ax.set(ylabel=ylabel, xlabel=xlabel) |
| 404 | apply_style(fig, title, style, no_legend=True) |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 405 | |
| 406 | |
| 407 | @provide_plot |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 408 | def plot_v_over_time(fig: Figure, |
| 409 | title: str, |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 410 | units: str, |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 411 | ts: TimeSeries, |
| 412 | plot_avg_dev: bool = True, |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 413 | plot_points: bool = True, |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 414 | colors: ColorProfile = DefColorProfile, |
| 415 | style: StyleProfile = DefStyleProfile) -> None: |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 416 | |
| 417 | min_time = min(ts.times) |
| 418 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 419 | # convert time to ms |
| 420 | coef = float(unit_conversion_coef(ts.time_units, 's')) |
| 421 | time_points = numpy.array([(val_time - min_time) * coef for val_time in ts.times]) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 422 | |
| 423 | outliers_idxs = find_ouliers_ts(ts.data, cut_range=style.outliers_q_nd) |
| 424 | outliers_4q_idxs = find_ouliers_ts(ts.data, cut_range=style.outliers_hide_q_nd) |
| 425 | normal_idxs = numpy.logical_not(outliers_idxs) |
| 426 | outliers_idxs = outliers_idxs & numpy.logical_not(outliers_4q_idxs) |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 427 | # hidden_outliers_count = numpy.count_nonzero(outliers_4q_idxs) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 428 | |
| 429 | data = ts.data[normal_idxs] |
| 430 | data_times = time_points[normal_idxs] |
| 431 | outliers = ts.data[outliers_idxs] |
| 432 | outliers_times = time_points[outliers_idxs] |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 433 | |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 434 | ax = fig.add_subplot(111) |
| 435 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 436 | if plot_points: |
| 437 | alpha = colors.noise_alpha if plot_avg_dev else 1.0 |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 438 | ax.plot(data_times, data, style.point_shape, |
| 439 | color=colors.primary_color, alpha=alpha, label="Data") |
| 440 | ax.plot(outliers_times, outliers, style.err_point_shape, |
| 441 | color=colors.err_color, label="Outliers") |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 442 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 443 | has_negative_dev = False |
| 444 | plus_minus = "\xb1" |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 445 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 446 | if plot_avg_dev and len(data) < style.avg_range * 2: |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 447 | logger.warning("Array %r to small to plot average over %s points", title, style.avg_range) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 448 | elif plot_avg_dev: |
| 449 | avg_vals = moving_average(data, style.avg_range) |
| 450 | dev_vals = moving_dev(data, style.avg_range) |
| 451 | avg_times = moving_average(data_times, style.avg_range) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 452 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 453 | if style.approx_average: |
| 454 | avg_vals = approximate_curve(avg_times, avg_vals, avg_times, style.curve_approx_level) |
| 455 | dev_vals = approximate_curve(avg_times, dev_vals, avg_times, style.curve_approx_level) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 456 | |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 457 | ax.plot(avg_times, avg_vals, c=colors.suppl_color1, label="Average") |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 458 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 459 | low_vals_dev = avg_vals - dev_vals * style.dev_range_x |
| 460 | hight_vals_dev = avg_vals + dev_vals * style.dev_range_x |
| 461 | if style.dev_range_x - int(style.dev_range_x) < 0.01: |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 462 | ax.plot(avg_times, low_vals_dev, c=colors.suppl_color2, |
| 463 | label="{}{}*stdev".format(plus_minus, int(style.dev_range_x))) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 464 | else: |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 465 | ax.plot(avg_times, low_vals_dev, c=colors.suppl_color2, |
| 466 | label="{}{}*stdev".format(plus_minus, style.dev_range_x)) |
| 467 | ax.plot(avg_times, hight_vals_dev, c=colors.suppl_color2) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 468 | has_negative_dev = low_vals_dev.min() < 0 |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 469 | |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 470 | ax.set_xlim(-5, max(time_points) + 5) |
| 471 | ax.set_xlabel("Time, seconds from test begin") |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 472 | |
| 473 | if plot_avg_dev: |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 474 | ax.set_ylabel("{}. Average and {}stddev over {} points".format(units, plus_minus, style.avg_range)) |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 475 | else: |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 476 | ax.set_ylabel(units) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 477 | |
| 478 | if has_negative_dev: |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 479 | ax.set_ylim(bottom=0) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 480 | |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 481 | apply_style(fig, title, style, eng=True) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 482 | |
| 483 | |
| 484 | @provide_plot |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 485 | def plot_lat_over_time(fig: Figure, |
| 486 | title: str, |
| 487 | ts: TimeSeries, |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 488 | ylabel: str, |
| 489 | samples: int = 5, |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 490 | colors: ColorProfile = DefColorProfile, style: StyleProfile = DefStyleProfile) -> None: |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 491 | |
| 492 | min_time = min(ts.times) |
| 493 | times = [int(tm - min_time + 500) // 1000 for tm in ts.times] |
| 494 | ts_len = len(times) |
| 495 | step = ts_len / samples |
| 496 | points = [times[int(i * step + 0.5)] for i in range(samples)] |
| 497 | points.append(times[-1]) |
| 498 | bounds = list(zip(points[:-1], points[1:])) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 499 | agg_data = [] |
| 500 | positions = [] |
| 501 | labels = [] |
| 502 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 503 | for begin, end in bounds: |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 504 | agg_hist = ts.data[begin:end].sum(axis=0) |
| 505 | |
| 506 | if style.violin_instead_of_box: |
| 507 | # cut outliers |
| 508 | idx1, idx2 = hist_outliers_perc(agg_hist, style.outliers_lat) |
| 509 | agg_hist = agg_hist[idx1:idx2] |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 510 | curr_bins_vals = ts.histo_bins[idx1:idx2] |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 511 | |
| 512 | correct_coef = style.violin_point_count / sum(agg_hist) |
| 513 | if correct_coef > 1: |
| 514 | correct_coef = 1 |
| 515 | else: |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 516 | curr_bins_vals = ts.histo_bins |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 517 | correct_coef = 1 |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 518 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 519 | vals = numpy.empty(shape=[numpy.sum(agg_hist)], dtype='float32') |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 520 | cidx = 0 |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 521 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 522 | non_zero, = agg_hist.nonzero() |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 523 | for pos in non_zero: |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 524 | count = int(agg_hist[pos] * correct_coef + 0.5) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 525 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 526 | if count != 0: |
| 527 | vals[cidx: cidx + count] = curr_bins_vals[pos] |
| 528 | cidx += count |
| 529 | |
| 530 | agg_data.append(vals[:cidx]) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 531 | positions.append((end + begin) / 2) |
| 532 | labels.append(str((end + begin) // 2)) |
| 533 | |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 534 | ax = fig.add_subplot(111) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 535 | if style.violin_instead_of_box: |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 536 | patches = ax.violinplot(agg_data, |
| 537 | positions=positions, |
| 538 | showmeans=True, |
| 539 | showmedians=True, |
| 540 | widths=step / 2) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 541 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 542 | patches['cmeans'].set_color("blue") |
| 543 | patches['cmedians'].set_color("green") |
| 544 | if style.legend_for_eng: |
| 545 | legend_location = "center left" |
| 546 | legend_bbox_to_anchor = (1.03, 0.81) |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 547 | ax.legend([patches['cmeans'], patches['cmedians']], ["mean", "median"], |
| 548 | loc=legend_location, bbox_to_anchor=legend_bbox_to_anchor) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 549 | else: |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 550 | ax.boxplot(agg_data, 0, '', positions=positions, labels=labels, widths=step / 4) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 551 | |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 552 | ax.set_xlim(min(times), max(times)) |
| 553 | ax.set(ylabel=ylabel, xlabel="Time, seconds from test begin, sampled for ~{} seconds".format(int(step))) |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 554 | apply_style(fig, title, style, eng=True, no_legend=True) |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 555 | fig.subplots_adjust(right=style.subplot_adjust_r) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 556 | |
| 557 | |
| 558 | @provide_plot |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 559 | def plot_histo_heatmap(fig: Figure, |
| 560 | title: str, |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 561 | ts: TimeSeries, |
| 562 | ylabel: str, |
| 563 | xlabel: str = "time, s", |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 564 | colors: ColorProfile = DefColorProfile, style: StyleProfile = DefStyleProfile) -> None: |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 565 | |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 566 | fig.set_size_inches(*style.figsize_long) |
| 567 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 568 | # only histogram-based ts can be plotted |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 569 | assert len(ts.data.shape) == 2 |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 570 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 571 | # Find global outliers. As load is expected to be stable during one job |
| 572 | # outliers range can be detected globally |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 573 | total_hist = ts.data.sum(axis=0) |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 574 | idx1, idx2 = hist_outliers_perc(total_hist, |
| 575 | bounds_perc=style.outliers_lat, |
| 576 | min_bins_left=style.hm_hist_bins_count) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 577 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 578 | # merge outliers with most close non-outliers cell |
| 579 | orig_data = ts.data[:, idx1:idx2].copy() |
| 580 | if idx1 > 0: |
| 581 | orig_data[:, 0] += ts.data[:, :idx1].sum(axis=1) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 582 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 583 | if idx2 < ts.data.shape[1]: |
| 584 | orig_data[:, -1] += ts.data[:, idx2:].sum(axis=1) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 585 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 586 | bins_vals = ts.histo_bins[idx1:idx2] |
| 587 | |
| 588 | # rebin over X axis |
| 589 | # aggregate some lines in ts.data to plot not more than style.hm_x_slots x bins |
| 590 | agg_idx = float(len(orig_data)) / style.hm_x_slots |
| 591 | if agg_idx >= 2: |
| 592 | data = numpy.zeros([style.hm_x_slots, orig_data.shape[1]], dtype=numpy.float32) # type: List[numpy.ndarray] |
| 593 | next = agg_idx |
| 594 | count = 0 |
| 595 | data_idx = 0 |
| 596 | for idx, arr in enumerate(orig_data): |
| 597 | if idx >= next: |
| 598 | data[data_idx] /= count |
| 599 | data_idx += 1 |
| 600 | next += agg_idx |
| 601 | count = 0 |
| 602 | data[data_idx] += arr |
| 603 | count += 1 |
| 604 | |
| 605 | if count > 1: |
| 606 | data[-1] /= count |
| 607 | else: |
| 608 | data = orig_data |
| 609 | |
| 610 | # rebin over Y axis |
| 611 | # ================= |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 612 | |
| 613 | # don't using rebin_histogram here, as we need apply same bins for many arrays |
| 614 | step = (bins_vals[-1] - bins_vals[0]) / style.hm_hist_bins_count |
| 615 | new_bins_edges = numpy.arange(style.hm_hist_bins_count) * step + bins_vals[0] |
| 616 | bin_mapping = numpy.clip(numpy.searchsorted(new_bins_edges, bins_vals) - 1, 0, len(new_bins_edges) - 1) |
| 617 | |
| 618 | # map origin bins ranges to heatmap bins, iterate over rows |
| 619 | cmap = [] |
| 620 | for line in data: |
| 621 | curr_bins = [0] * style.hm_hist_bins_count |
| 622 | for idx, count in zip(bin_mapping, line): |
| 623 | curr_bins[idx] += count |
| 624 | cmap.append(curr_bins) |
| 625 | ncmap = numpy.array(cmap) |
| 626 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 627 | # plot data |
| 628 | # ========= |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 629 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 630 | boxes = 3 |
| 631 | gs = gridspec.GridSpec(1, boxes) |
| 632 | ax = fig.add_subplot(gs[0, :boxes - 1]) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 633 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 634 | labels = list(map(float2str, (new_bins_edges[:-1] + new_bins_edges[1:]) / 2)) + \ |
| 635 | [float2str(new_bins_edges[-1]) + "+"] |
| 636 | seaborn.heatmap(ncmap[:,::-1].T, xticklabels=False, cmap="Blues", ax=ax) |
| 637 | ax.set_yticklabels(labels, rotation='horizontal') |
| 638 | ax.set_xticklabels([]) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 639 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 640 | # plot overall histogram |
| 641 | # ======================= |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 642 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 643 | ax2 = fig.add_subplot(gs[0, boxes - 1]) |
| 644 | ax2.set_yticklabels([]) |
| 645 | ax2.set_xticklabels([]) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 646 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 647 | histo = ncmap.sum(axis=0).reshape((-1,)) |
| 648 | ax2.set_ylim(top=histo.size, bottom=0) |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 649 | ax2.barh(numpy.arange(histo.size) + 0.5, width=histo) |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 650 | |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 651 | ax.set(ylabel=ylabel, xlabel=xlabel) |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 652 | |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 653 | apply_style(fig, title, style, eng=True, no_legend=True) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 654 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 655 | |
| 656 | @provide_plot |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 657 | def io_chart(fig: Figure, |
| 658 | title: str, |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 659 | legend: str, |
| 660 | iosums: List[IOSummary], |
| 661 | iops_log_spine: bool = False, |
| 662 | lat_log_spine: bool = False, |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 663 | colors: ColorProfile = DefColorProfile, style: StyleProfile = DefStyleProfile) -> None: |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 664 | |
| 665 | # -------------- MAGIC VALUES --------------------- |
| 666 | # IOPS bar width |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 667 | width = 0.2 |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 668 | |
| 669 | # offset from center of bar to deviation/confidence range indicator |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 670 | err_x_offset = 0.03 |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 671 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 672 | # extra space on top and bottom, comparing to maximal tight layout |
| 673 | extra_y_space = 0.05 |
| 674 | |
| 675 | # additional spine for BW/IOPS on left side of plot |
| 676 | extra_io_spine_x_offset = -0.1 |
| 677 | |
| 678 | # extra space on left and right sides |
| 679 | extra_x_space = 0.5 |
| 680 | |
| 681 | # legend location settings |
| 682 | legend_location = "center left" |
| 683 | legend_bbox_to_anchor = (1.1, 0.81) |
| 684 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 685 | # -------------- END OF MAGIC VALUES --------------------- |
| 686 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 687 | matplotlib.style.use(style.io_chart_style) |
| 688 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 689 | block_size = iosums[0].block_size |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 690 | xpos = numpy.arange(1, len(iosums) + 1, dtype='uint') |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 691 | |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 692 | ax = fig.add_subplot(111) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 693 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 694 | coef_mb = float(unit_conversion_coef(iosums[0].bw.units, "MiBps")) |
| 695 | coef_iops = float(unit_conversion_coef(iosums[0].bw.units, "KiBps")) / block_size |
| 696 | |
| 697 | iops_primary = block_size < style.large_blocks |
| 698 | |
| 699 | coef = coef_iops if iops_primary else coef_mb |
| 700 | ax.set_ylabel("IOPS" if iops_primary else "BW (MiBps)") |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 701 | |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 702 | vals = [iosum.bw.average * coef for iosum in iosums] |
| 703 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 704 | # set correct x limits for primary IO spine |
| 705 | min_io = min(iosum.bw.average - iosum.bw.deviation * style.dev_range_x for iosum in iosums) |
| 706 | max_io = max(iosum.bw.average + iosum.bw.deviation * style.dev_range_x for iosum in iosums) |
| 707 | border = (max_io - min_io) * extra_y_space |
| 708 | io_lims = (min_io - border, max_io + border) |
| 709 | |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 710 | ax.set_ylim(io_lims[0] * coef, io_lims[-1] * coef) |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 711 | ax.bar(xpos - width / 2, vals, width=width, color=colors.box_color, label=legend) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 712 | |
| 713 | # plot deviation and confidence error ranges |
| 714 | err1_legend = err2_legend = None |
| 715 | for pos, iosum in zip(xpos, iosums): |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 716 | dev_bar_pos = pos - err_x_offset |
| 717 | err1_legend = ax.errorbar(dev_bar_pos, |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 718 | iosum.bw.average * coef, |
| 719 | iosum.bw.deviation * style.dev_range_x * coef, |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 720 | alpha=colors.subinfo_alpha, |
| 721 | color=colors.suppl_color1) # 'magenta' |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 722 | |
| 723 | conf_bar_pos = pos + err_x_offset |
| 724 | err2_legend = ax.errorbar(conf_bar_pos, |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 725 | iosum.bw.average * coef, |
| 726 | iosum.bw.confidence * coef, |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 727 | alpha=colors.subinfo_alpha, |
| 728 | color=colors.suppl_color2) # 'teal' |
| 729 | |
| 730 | if style.grid: |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 731 | ax.grid(True) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 732 | |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 733 | handles1, labels1 = ax.get_legend_handles_labels() |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 734 | |
| 735 | handles1 += [err1_legend, err2_legend] |
| 736 | labels1 += ["{}% dev".format(style.dev_perc), |
| 737 | "{}% conf".format(int(100 * iosums[0].bw.confidence_level))] |
| 738 | |
| 739 | # extra y spine for latency on right side |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 740 | ax2 = ax.twinx() |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 741 | |
| 742 | # plot median and 95 perc latency |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 743 | lat_coef_ms = float(unit_conversion_coef(iosums[0].lat.units, "ms")) |
| 744 | ax2.plot(xpos, [iosum.lat.perc_50 * lat_coef_ms for iosum in iosums], label="lat med") |
| 745 | ax2.plot(xpos, [iosum.lat.perc_95 * lat_coef_ms for iosum in iosums], label="lat 95%") |
| 746 | |
| 747 | for grid_line in ax2.get_ygridlines(): |
| 748 | grid_line.set_linestyle(":") |
| 749 | |
| 750 | # extra y spine for BW/IOPS on left side |
| 751 | if style.extra_io_spine: |
| 752 | ax3 = ax.twinx() |
| 753 | if iops_log_spine: |
| 754 | ax3.set_yscale('log') |
| 755 | |
| 756 | ax3.set_ylabel("BW (MiBps)" if iops_primary else "IOPS") |
| 757 | secondary_coef = coef_mb if iops_primary else coef_iops |
| 758 | ax3.set_ylim(io_lims[0] * secondary_coef, io_lims[1] * secondary_coef) |
| 759 | ax3.spines["left"].set_position(("axes", extra_io_spine_x_offset)) |
| 760 | ax3.spines["left"].set_visible(True) |
| 761 | ax3.yaxis.set_label_position('left') |
| 762 | ax3.yaxis.set_ticks_position('left') |
| 763 | else: |
| 764 | ax3 = None |
| 765 | |
| 766 | ax2.set_ylabel("Latency (ms)") |
| 767 | |
| 768 | # legend box |
| 769 | handles2, labels2 = ax2.get_legend_handles_labels() |
| 770 | ax.legend(handles1 + handles2, labels1 + labels2, |
| 771 | loc=legend_location, |
| 772 | bbox_to_anchor=legend_bbox_to_anchor) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 773 | |
| 774 | # limit and label x spine |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 775 | ax.set_xlim(extra_x_space, len(iosums) + extra_x_space) |
| 776 | ax.set_xticks(xpos) |
| 777 | ax.set_xticklabels(["{0} * {1} = {2}".format(iosum.qd, iosum.nodes_count, iosum.qd * iosum.nodes_count) |
| 778 | for iosum in iosums]) |
| 779 | ax.set_xlabel("IO queue depth * test node count = total parallel requests") |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 780 | |
| 781 | # apply log scales for X spines, if set |
| 782 | if iops_log_spine: |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 783 | ax.set_yscale('log') |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 784 | |
| 785 | if lat_log_spine: |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 786 | ax2.set_yscale('log') |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 787 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 788 | # adjust central box size to fit legend |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 789 | apply_style(fig, title, style, eng=False, no_legend=True) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 790 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 791 | # override some styles |
| 792 | fig.set_size_inches(*style.qd_chart_inches) |
| 793 | fig.subplots_adjust(right=StyleProfile.subplot_adjust_r) |
| 794 | |
| 795 | if style.extra_io_spine: |
| 796 | ax3.grid(False) |
| 797 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 798 | |
| 799 | # -------------------- REPORT HELPERS -------------------------------------------------------------------------------- |
| 800 | |
| 801 | |
koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 802 | class HTMLBlock: |
| 803 | data = None # type: str |
| 804 | js_links = [] # type: List[str] |
| 805 | css_links = [] # type: List[str] |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 806 | order_attr = None # type: Any |
| 807 | |
| 808 | def __init__(self, data: str, order_attr: Any = None) -> None: |
| 809 | self.data = data |
| 810 | self.order_attr = order_attr |
| 811 | |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 812 | def __eq__(self, o: Any) -> bool: |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 813 | return o.order_attr == self.order_attr # type: ignore |
| 814 | |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 815 | def __lt__(self, o: Any) -> bool: |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 816 | return o.order_attr > self.order_attr # type: ignore |
| 817 | |
| 818 | |
| 819 | class Table: |
| 820 | def __init__(self, header: List[str]) -> None: |
| 821 | self.header = header |
| 822 | self.data = [] |
| 823 | |
| 824 | def add_line(self, values: List[str]) -> None: |
| 825 | self.data.append(values) |
| 826 | |
| 827 | def html(self): |
| 828 | return html.table("", self.header, self.data) |
koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 829 | |
| 830 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 831 | class Menu1st: |
| 832 | engineering = "Engineering" |
| 833 | summary = "Summary" |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 834 | per_job = "Per Job" |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 835 | |
| 836 | |
| 837 | class Menu2ndEng: |
| 838 | iops_time = "IOPS(time)" |
| 839 | hist = "IOPS/lat overall histogram" |
| 840 | lat_time = "Lat(time)" |
| 841 | |
| 842 | |
| 843 | class Menu2ndSumm: |
| 844 | io_lat_qd = "IO & Lat vs QD" |
| 845 | |
| 846 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 847 | menu_1st_order = [Menu1st.summary, Menu1st.engineering, Menu1st.per_job] |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 848 | |
| 849 | |
| 850 | # -------------------- REPORTS -------------------------------------------------------------------------------------- |
| 851 | |
| 852 | |
koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 853 | class Reporter(metaclass=abc.ABCMeta): |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 854 | suite_types = set() # type: Set[str] |
| 855 | |
koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 856 | @abc.abstractmethod |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 857 | def get_divs(self, suite: SuiteConfig, storage: ResultStorage) -> Iterator[Tuple[str, str, HTMLBlock]]: |
| 858 | pass |
| 859 | |
| 860 | |
| 861 | class JobReporter(metaclass=abc.ABCMeta): |
| 862 | suite_type = set() # type: Set[str] |
| 863 | |
| 864 | @abc.abstractmethod |
| 865 | def get_divs(self, |
| 866 | suite: SuiteConfig, |
| 867 | job: JobConfig, |
| 868 | storage: ResultStorage) -> Iterator[Tuple[str, str, HTMLBlock]]: |
koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 869 | pass |
| 870 | |
| 871 | |
| 872 | # Main performance report |
| 873 | class PerformanceSummary(Reporter): |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 874 | """Aggregated summary fro storage""" |
koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 875 | |
| 876 | |
| 877 | # Main performance report |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 878 | class IO_QD(Reporter): |
koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 879 | """Creates graph, which show how IOPS and Latency depend on QD""" |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 880 | suite_types = {'fio'} |
| 881 | |
| 882 | def get_divs(self, suite: SuiteConfig, rstorage: ResultStorage) -> Iterator[Tuple[str, str, HTMLBlock]]: |
| 883 | ts_map = defaultdict(list) # type: Dict[FioJobParams, List[Tuple[SuiteConfig, FioJobConfig]]] |
| 884 | str_summary = {} # type: Dict[FioJobParams, List[IOSummary]] |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 885 | for job in rstorage.iter_job(suite): |
| 886 | fjob = cast(FioJobConfig, job) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 887 | fjob_no_qd = cast(FioJobParams, fjob.params.copy(qd=None)) |
| 888 | str_summary[fjob_no_qd] = (fjob_no_qd.summary, fjob_no_qd.long_summary) |
| 889 | ts_map[fjob_no_qd].append((suite, fjob)) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 890 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 891 | for tpl, suites_jobs in ts_map.items(): |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 892 | if len(suites_jobs) >= StyleProfile.min_iops_vs_qd_jobs: |
| 893 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 894 | iosums = [make_iosum(rstorage, suite, job) for suite, job in suites_jobs] |
| 895 | iosums.sort(key=lambda x: x.qd) |
| 896 | summary, summary_long = str_summary[tpl] |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 897 | |
| 898 | yield Menu1st.summary, Menu2ndSumm.io_lat_qd, \ |
| 899 | HTMLBlock(html.H2(html.center("IOPS, BW, Lat = func(QD). " + summary_long))) |
| 900 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 901 | ds = DataSource(suite_id=suite.storage_id, |
| 902 | job_id=summary, |
| 903 | node_id=AGG_TAG, |
| 904 | sensor="fio", |
| 905 | dev=AGG_TAG, |
| 906 | metric="io_over_qd", |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 907 | tag=io_chart_format) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 908 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 909 | fpath = io_chart(rstorage, ds, title="", legend="IOPS/BW", iosums=iosums) # type: str |
| 910 | yield Menu1st.summary, Menu2ndSumm.io_lat_qd, HTMLBlock(html.center(html.img(fpath))) |
koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 911 | |
| 912 | |
| 913 | # Linearization report |
| 914 | class IOPS_Bsize(Reporter): |
| 915 | """Creates graphs, which show how IOPS and Latency depend on block size""" |
| 916 | |
| 917 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 918 | class StatInfo(JobReporter): |
| 919 | """Statistic info for job results""" |
| 920 | suite_types = {'fio'} |
| 921 | |
| 922 | def get_divs(self, suite: SuiteConfig, job: JobConfig, |
| 923 | rstorage: ResultStorage) -> Iterator[Tuple[str, str, HTMLBlock]]: |
| 924 | |
| 925 | fjob = cast(FioJobConfig, job) |
| 926 | io_sum = make_iosum(rstorage, suite, fjob) |
| 927 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 928 | res = html.H2(html.center("Test summary - " + job.params.long_summary)) |
| 929 | stat_data_headers = ["Name", "Average ~ Dev", "Conf interval", "Mediana", "Mode", "Kurt / Skew", "95%", "99%", |
| 930 | "ADF test"] |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 931 | |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 932 | bw_target_units = 'Bps' |
| 933 | bw_coef = float(unit_conversion_coef(io_sum.bw.units, bw_target_units)) |
| 934 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 935 | adf_v, *_1, stats, _2 = adfuller(io_sum.bw.data) |
| 936 | |
| 937 | for v in ("1%", "5%", "10%"): |
| 938 | if adf_v <= stats[v]: |
| 939 | ad_test = v |
| 940 | break |
| 941 | else: |
| 942 | ad_test = "Failed" |
| 943 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 944 | bw_data = ["Bandwidth", |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 945 | "{}{} ~ {}{}".format(b2ssize(io_sum.bw.average * bw_coef), bw_target_units, |
| 946 | b2ssize(io_sum.bw.deviation * bw_coef), bw_target_units), |
| 947 | b2ssize(io_sum.bw.confidence * bw_coef) + bw_target_units, |
| 948 | b2ssize(io_sum.bw.perc_50 * bw_coef) + bw_target_units, |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 949 | "-", |
| 950 | "{:.2f} / {:.2f}".format(io_sum.bw.kurt, io_sum.bw.skew), |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 951 | b2ssize(io_sum.bw.perc_5 * bw_coef) + bw_target_units, |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 952 | b2ssize(io_sum.bw.perc_1 * bw_coef) + bw_target_units, |
| 953 | ad_test] |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 954 | |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 955 | iops_coef = float(unit_conversion_coef(io_sum.bw.units, 'KiBps')) / fjob.bsize |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 956 | iops_data = ["IOPS", |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 957 | "{}IOPS ~ {}IOPS".format(b2ssize_10(io_sum.bw.average * iops_coef), |
| 958 | b2ssize_10(io_sum.bw.deviation * iops_coef)), |
| 959 | b2ssize_10(io_sum.bw.confidence * iops_coef) + "IOPS", |
| 960 | b2ssize_10(io_sum.bw.perc_50 * iops_coef) + "IOPS", |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 961 | "-", |
| 962 | "{:.2f} / {:.2f}".format(io_sum.bw.kurt, io_sum.bw.skew), |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 963 | b2ssize_10(io_sum.bw.perc_5 * iops_coef) + "IOPS", |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 964 | b2ssize_10(io_sum.bw.perc_1 * iops_coef) + "IOPS", |
| 965 | ad_test] |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 966 | |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 967 | lat_target_unit = 's' |
| 968 | lat_coef = unit_conversion_coef(io_sum.lat.units, lat_target_unit) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 969 | # latency |
| 970 | lat_data = ["Latency", |
| 971 | "-", |
| 972 | "-", |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 973 | b2ssize_10(io_sum.lat.perc_50 * lat_coef) + lat_target_unit, |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 974 | "-", |
| 975 | "-", |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 976 | b2ssize_10(io_sum.lat.perc_95 * lat_coef) + lat_target_unit, |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 977 | b2ssize_10(io_sum.lat.perc_99 * lat_coef) + lat_target_unit, |
| 978 | '-'] |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 979 | |
| 980 | # sensor usage |
| 981 | stat_data = [iops_data, bw_data, lat_data] |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 982 | res += html.center(html.table("Load stats info", stat_data_headers, stat_data)) |
| 983 | yield Menu1st.per_job, job.summary, HTMLBlock(res) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 984 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 985 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 986 | def avg_dev_div(vec: numpy.ndarray, denom: numpy.ndarray, avg_ranges: int = 10) -> Tuple[float, float]: |
| 987 | step = min(vec.size, denom.size) // avg_ranges |
| 988 | assert step >= 1 |
| 989 | vals = [] |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 990 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 991 | whole_sum = denom.sum() / denom.size * step * 0.5 |
| 992 | for i in range(0, avg_ranges): |
| 993 | s1 = denom[i * step: (i + 1) * step].sum() |
| 994 | if s1 >= whole_sum: |
| 995 | vals.append(vec[i * step: (i + 1) * step].sum() / s1) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 996 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 997 | assert len(vals) > 1 |
| 998 | return vec.sum() / denom.sum(), numpy.std(vals, ddof=1) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 999 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1000 | |
| 1001 | class Resources(JobReporter): |
| 1002 | """Statistic info for job results""" |
| 1003 | suite_types = {'fio'} |
| 1004 | |
| 1005 | def get_divs(self, suite: SuiteConfig, job: JobConfig, |
| 1006 | rstorage: ResultStorage) -> Iterator[Tuple[str, str, HTMLBlock]]: |
| 1007 | |
| 1008 | fjob = cast(FioJobConfig, job) |
| 1009 | io_sum = make_iosum(rstorage, suite, fjob) |
| 1010 | |
| 1011 | tot_io_coef = float(unit_conversion_coef(io_sum.bw.units, "Bps")) |
| 1012 | io_transfered = io_sum.bw.data * tot_io_coef |
| 1013 | ops_done = io_transfered / (fjob.bsize * float(unit_conversion_coef("KiBps", "Bps"))) |
| 1014 | |
| 1015 | io_made = "Client IOP made" |
| 1016 | data_tr = "Client data transfered" |
| 1017 | |
| 1018 | records = { |
| 1019 | io_made: (b2ssize_10(ops_done.sum()) + "OP", None, None), |
| 1020 | data_tr: (b2ssize(io_transfered.sum()) + "B", None, None) |
| 1021 | } # type: Dict[str, Tuple[str, float, float]] |
| 1022 | |
| 1023 | test_send = "Test nodes net send" |
| 1024 | test_recv = "Test nodes net recv" |
| 1025 | test_net = "Test nodes net total" |
| 1026 | test_send_pkt = "Test nodes send pkt" |
| 1027 | test_recv_pkt = "Test nodes recv pkt" |
| 1028 | test_net_pkt = "Test nodes total pkt" |
| 1029 | |
| 1030 | test_write = "Test nodes disk write" |
| 1031 | test_read = "Test nodes disk read" |
| 1032 | test_write_iop = "Test nodes write IOP" |
| 1033 | test_read_iop = "Test nodes read IOP" |
| 1034 | test_iop = "Test nodes IOP" |
| 1035 | test_rw = "Test nodes disk IO" |
| 1036 | |
| 1037 | storage_send = "Storage nodes net send" |
| 1038 | storage_recv = "Storage nodes net recv" |
| 1039 | storage_send_pkt = "Storage nodes send pkt" |
| 1040 | storage_recv_pkt = "Storage nodes recv pkt" |
| 1041 | storage_net = "Storage nodes net total" |
| 1042 | storage_net_pkt = "Storage nodes total pkt" |
| 1043 | |
| 1044 | storage_write = "Storage nodes disk write" |
| 1045 | storage_read = "Storage nodes disk read" |
| 1046 | storage_write_iop = "Storage nodes write IOP" |
| 1047 | storage_read_iop = "Storage nodes read IOP" |
| 1048 | storage_iop = "Storage nodes IOP" |
| 1049 | storage_rw = "Storage nodes disk IO" |
| 1050 | |
| 1051 | storage_cpu = "Storage nodes CPU" |
| 1052 | storage_cpu_s = "Storage nodes CPU s/IOP" |
| 1053 | storage_cpu_s_b = "Storage nodes CPU s/B" |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1054 | |
| 1055 | all_metrics = [ |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1056 | (test_send, 'net-io', 'send_bytes', b2ssize, ['testnode'], "B", io_transfered), |
| 1057 | (test_recv, 'net-io', 'recv_bytes', b2ssize, ['testnode'], "B", io_transfered), |
| 1058 | (test_send_pkt, 'net-io', 'send_packets', b2ssize_10, ['testnode'], "pkt", ops_done), |
| 1059 | (test_recv_pkt, 'net-io', 'recv_packets', b2ssize_10, ['testnode'], "pkt", ops_done), |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1060 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1061 | (test_write, 'block-io', 'sectors_written', b2ssize, ['testnode'], "B", io_transfered), |
| 1062 | (test_read, 'block-io', 'sectors_read', b2ssize, ['testnode'], "B", io_transfered), |
| 1063 | (test_write_iop, 'block-io', 'writes_completed', b2ssize_10, ['testnode'], "OP", ops_done), |
| 1064 | (test_read_iop, 'block-io', 'reads_completed', b2ssize_10, ['testnode'], "OP", ops_done), |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1065 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1066 | (storage_send, 'net-io', 'send_bytes', b2ssize, STORAGE_ROLES, "B", io_transfered), |
| 1067 | (storage_recv, 'net-io', 'recv_bytes', b2ssize, STORAGE_ROLES, "B", io_transfered), |
| 1068 | (storage_send_pkt, 'net-io', 'send_packets', b2ssize_10, STORAGE_ROLES, "OP", ops_done), |
| 1069 | (storage_recv_pkt, 'net-io', 'recv_packets', b2ssize_10, STORAGE_ROLES, "OP", ops_done), |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1070 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1071 | (storage_write, 'block-io', 'sectors_written', b2ssize, STORAGE_ROLES, "B", io_transfered), |
| 1072 | (storage_read, 'block-io', 'sectors_read', b2ssize, STORAGE_ROLES, "B", io_transfered), |
| 1073 | (storage_write_iop, 'block-io', 'writes_completed', b2ssize_10, STORAGE_ROLES, "OP", ops_done), |
| 1074 | (storage_read_iop, 'block-io', 'reads_completed', b2ssize_10, STORAGE_ROLES, "OP", ops_done), |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1075 | ] |
| 1076 | |
| 1077 | all_agg = {} |
| 1078 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1079 | for vname, sensor, metric, ffunc, roles, units, service_provided_count in all_metrics: |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 1080 | res_ts = summ_sensors(rstorage, roles, sensor=sensor, metric=metric, time_range=job.reliable_info_range_s) |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 1081 | if res_ts is None: |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1082 | continue |
| 1083 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1084 | data = res_ts.data |
| 1085 | if units == "B": |
| 1086 | data = data * float(unit_conversion_coef(res_ts.units, "B")) |
| 1087 | |
| 1088 | records[vname] = (ffunc(data.sum()) + units, *avg_dev_div(data, service_provided_count)) |
| 1089 | all_agg[vname] = data |
| 1090 | |
| 1091 | # cpu usage |
| 1092 | nodes_count = len(list(find_nodes_by_roles(rstorage, STORAGE_ROLES))) |
| 1093 | cpu_ts = get_cluster_cpu_load(rstorage, STORAGE_ROLES, job.reliable_info_range_s) |
| 1094 | |
| 1095 | cpus_used_sec = (1.0 - cpu_ts['idle'].data / cpu_ts['total'].data) * nodes_count |
| 1096 | used_s = b2ssize_10(cpus_used_sec.sum()) + 's' |
| 1097 | |
| 1098 | all_agg[storage_cpu] = cpus_used_sec |
| 1099 | records[storage_cpu_s] = (used_s, *avg_dev_div(cpus_used_sec, ops_done)) |
| 1100 | records[storage_cpu_s_b] = (used_s, *avg_dev_div(cpus_used_sec, io_transfered)) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1101 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1102 | cums = [ |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1103 | (test_iop, test_read_iop, test_write_iop, b2ssize_10, "OP", ops_done), |
| 1104 | (test_rw, test_read, test_write, b2ssize, "B", io_transfered), |
| 1105 | (test_net, test_send, test_recv, b2ssize, "B", io_transfered), |
| 1106 | (test_net_pkt, test_send_pkt, test_recv_pkt, b2ssize_10, "pkt", ops_done), |
| 1107 | |
| 1108 | (storage_iop, storage_read_iop, storage_write_iop, b2ssize_10, "OP", ops_done), |
| 1109 | (storage_rw, storage_read, storage_write, b2ssize, "B", io_transfered), |
| 1110 | (storage_net, storage_send, storage_recv, b2ssize, "B", io_transfered), |
| 1111 | (storage_net_pkt, storage_send_pkt, storage_recv_pkt, b2ssize_10, "pkt", ops_done), |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1112 | ] |
| 1113 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1114 | for vname, name1, name2, ffunc, units, service_provided_masked in cums: |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1115 | if name1 in all_agg and name2 in all_agg: |
| 1116 | agg = all_agg[name1] + all_agg[name2] |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1117 | records[vname] = (ffunc(agg.sum()) + units, *avg_dev_div(agg, service_provided_masked)) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1118 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1119 | table_structure = [ |
| 1120 | "Service provided", |
| 1121 | (io_made, data_tr), |
| 1122 | "Test nodes total load", |
| 1123 | (test_send_pkt, test_send), |
| 1124 | (test_recv_pkt, test_recv), |
| 1125 | (test_net_pkt, test_net), |
| 1126 | (test_write_iop, test_write), |
| 1127 | (test_read_iop, test_read), |
| 1128 | (test_iop, test_rw), |
| 1129 | (test_iop, test_rw), |
| 1130 | "Storage nodes resource consumed", |
| 1131 | (storage_send_pkt, storage_send), |
| 1132 | (storage_recv_pkt, storage_recv), |
| 1133 | (storage_net_pkt, storage_net), |
| 1134 | (storage_write_iop, storage_write), |
| 1135 | (storage_read_iop, storage_read), |
| 1136 | (storage_iop, storage_rw), |
| 1137 | (storage_cpu_s, storage_cpu_s_b), |
| 1138 | ] # type: List[Union[str, Tuple[Optional[str], Optional[str]]] |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1139 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1140 | yield Menu1st.per_job, job.summary, HTMLBlock(html.H2(html.center("Resources usage"))) |
| 1141 | |
| 1142 | doc = xmlbuilder3.XMLBuilder("table", |
| 1143 | **{"class": "table table-bordered table-striped table-condensed table-hover", |
| 1144 | "style": "width: auto;"}) |
| 1145 | |
| 1146 | with doc.thead: |
| 1147 | with doc.tr: |
| 1148 | [doc.th(header) for header in ["Resource", "Usage count", "To service"] * 2] |
| 1149 | |
| 1150 | cols = 6 |
| 1151 | |
| 1152 | short_name = { |
| 1153 | name: (name if name in {io_made, data_tr} else " ".join(name.split()[2:]).capitalize()) |
| 1154 | for name in records.keys() |
| 1155 | } |
| 1156 | |
| 1157 | short_name[storage_cpu_s] = "CPU (s/IOP)" |
| 1158 | short_name[storage_cpu_s_b] = "CPU (s/B)" |
| 1159 | |
| 1160 | with doc.tbody: |
| 1161 | with doc.tr: |
| 1162 | doc.td(colspan=str(cols // 2)).center.b("Operations") |
| 1163 | doc.td(colspan=str(cols // 2)).center.b("Bytes") |
| 1164 | |
| 1165 | for line in table_structure: |
| 1166 | with doc.tr: |
| 1167 | if isinstance(line, str): |
| 1168 | with doc.td(colspan=str(cols)): |
| 1169 | doc.center.b(line) |
| 1170 | else: |
| 1171 | for name in line: |
| 1172 | if name is None: |
| 1173 | doc.td("-", colspan=str(cols // 2)) |
| 1174 | continue |
| 1175 | |
| 1176 | amount_s, avg, dev = records[name] |
| 1177 | |
| 1178 | if name in (storage_cpu_s, storage_cpu_s_b) and avg is not None: |
| 1179 | dev_s = str(int(dev * 100 / avg)) + "%" if avg > 1E-9 else b2ssize_10(dev) + 's' |
| 1180 | rel_val_s = "{}s ~ {}".format(b2ssize_10(avg), dev_s) |
| 1181 | else: |
| 1182 | if avg is None: |
| 1183 | rel_val_s = '-' |
| 1184 | else: |
| 1185 | avg_s = int(avg) if avg > 10 else '{:.1f}'.format(avg) |
| 1186 | if avg > 1E-5: |
| 1187 | dev_s = str(int(dev * 100 / avg)) + "%" |
| 1188 | else: |
| 1189 | dev_s = int(dev) if dev > 10 else '{:.1f}'.format(dev) |
| 1190 | rel_val_s = "{} ~ {}".format(avg_s, dev_s) |
| 1191 | |
| 1192 | doc.td(short_name[name], align="left") |
| 1193 | doc.td(amount_s, align="right") |
| 1194 | |
| 1195 | if avg is None or avg < 0.9: |
| 1196 | doc.td(rel_val_s, align="right") |
| 1197 | elif avg < 2.0: |
| 1198 | doc.td(align="right").font(rel_val_s, color='green') |
| 1199 | elif avg < 5.0: |
| 1200 | doc.td(align="right").font(rel_val_s, color='orange') |
| 1201 | else: |
| 1202 | doc.td(align="right").font(rel_val_s, color='red') |
| 1203 | |
| 1204 | res = xmlbuilder3.tostr(doc).split("\n", 1)[1] |
| 1205 | yield Menu1st.per_job, job.summary, HTMLBlock(html.center(res)) |
| 1206 | |
| 1207 | iop_names = [test_write_iop, test_read_iop, test_iop, |
| 1208 | storage_write_iop, storage_read_iop, storage_iop] |
| 1209 | |
| 1210 | bytes_names = [test_write, test_read, test_rw, |
| 1211 | test_send, test_recv, test_net, |
| 1212 | storage_write, storage_read, storage_rw, |
| 1213 | storage_send, storage_recv, storage_net] |
| 1214 | |
| 1215 | net_pkt_names = [test_send_pkt, test_recv_pkt, test_net_pkt, |
| 1216 | storage_send_pkt, storage_recv_pkt, storage_net_pkt] |
| 1217 | |
| 1218 | for tp, names in [('iop', iop_names), ("bytes", bytes_names), ('Net packets per IOP', net_pkt_names)]: |
| 1219 | vals = [] |
| 1220 | devs = [] |
| 1221 | avail_names = [] |
| 1222 | for name in names: |
| 1223 | if name in records: |
| 1224 | avail_names.append(name) |
| 1225 | _, avg, dev = records[name] |
| 1226 | vals.append(avg) |
| 1227 | devs.append(dev) |
| 1228 | |
| 1229 | # synchronously sort values and names, values is a key |
| 1230 | vals, names, devs = map(list, zip(*sorted(zip(vals, names, devs)))) |
| 1231 | |
| 1232 | ds = DataSource(suite_id=suite.storage_id, |
| 1233 | job_id=job.storage_id, |
| 1234 | node_id=AGG_TAG, |
| 1235 | sensor='resources', |
| 1236 | dev=AGG_TAG, |
| 1237 | metric=tp.replace(' ', "_") + '2service_bar', |
| 1238 | tag=default_format) |
| 1239 | |
| 1240 | fname = plot_simple_bars(rstorage, ds, |
| 1241 | "Resource consuption / service provided, " + tp, |
| 1242 | [name.replace(" nodes", "") for name in names], |
| 1243 | vals, devs) |
| 1244 | |
| 1245 | yield Menu1st.per_job, job.summary, HTMLBlock(html.img(fname)) |
| 1246 | |
| 1247 | |
| 1248 | class BottleNeck(JobReporter): |
| 1249 | """Statistic info for job results""" |
| 1250 | suite_types = {'fio'} |
| 1251 | |
| 1252 | def get_divs(self, suite: SuiteConfig, job: JobConfig, rstorage: ResultStorage) -> \ |
| 1253 | Iterator[Tuple[str, str, HTMLBlock]]: |
| 1254 | |
| 1255 | nodes = list(find_nodes_by_roles(rstorage, STORAGE_ROLES)) |
| 1256 | |
| 1257 | sensor = 'block-io' |
| 1258 | metric = 'io_queue' |
| 1259 | bn_val = 16 |
| 1260 | |
| 1261 | for node in nodes: |
| 1262 | bn = 0 |
| 1263 | tot = 0 |
| 1264 | for _, ds in rstorage.iter_sensors(node_id=node.node_id, sensor=sensor, metric=metric): |
| 1265 | if ds.dev in ('sdb', 'sdc', 'sdd', 'sde'): |
| 1266 | data = rstorage.load_sensor(ds) |
| 1267 | p1 = job.reliable_info_range_s[0] * unit_conversion_coef('s', data.time_units) |
| 1268 | p2 = job.reliable_info_range_s[1] * unit_conversion_coef('s', data.time_units) |
| 1269 | idx1, idx2 = numpy.searchsorted(data.times, (p1, p2)) |
| 1270 | bn += (data.data[idx1: idx2] > bn_val).sum() |
| 1271 | tot += idx2 - idx1 |
| 1272 | print(node, bn, tot) |
| 1273 | |
| 1274 | yield Menu1st.per_job, job.summary, HTMLBlock("") |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1275 | |
| 1276 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 1277 | # CPU load |
| 1278 | class CPULoadPlot(JobReporter): |
| 1279 | def get_divs(self, |
| 1280 | suite: SuiteConfig, |
| 1281 | job: JobConfig, |
| 1282 | rstorage: ResultStorage) -> Iterator[Tuple[str, str, HTMLBlock]]: |
| 1283 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 1284 | # plot CPU time |
| 1285 | for rt, roles in [('storage', STORAGE_ROLES), ('test', ['testnode'])]: |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1286 | cpu_ts = get_cluster_cpu_load(rstorage, roles, job.reliable_info_range_s) |
| 1287 | tss = [(name, ts.data * 100 / cpu_ts['total'].data) |
| 1288 | for name, ts in cpu_ts.items() |
| 1289 | if name in {'user', 'sys', 'irq', 'idle'}] |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 1290 | fname = plot_simple_over_time(rstorage, |
| 1291 | cpu_ts['idle'].source(job_id=job.storage_id, |
| 1292 | suite_id=suite.storage_id, |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 1293 | metric='allcpu', tag=rt + '.plt.' + default_format), |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1294 | tss=tss, |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 1295 | average=True, |
| 1296 | ylabel="CPU time %", |
| 1297 | title="{} nodes CPU usage".format(rt.capitalize())) |
| 1298 | |
| 1299 | yield Menu1st.per_job, job.summary, HTMLBlock(html.img(fname)) |
| 1300 | |
| 1301 | |
| 1302 | # IO time and QD |
| 1303 | class QDIOTimeHeatmap(JobReporter): |
| 1304 | def get_divs(self, |
| 1305 | suite: SuiteConfig, |
| 1306 | job: JobConfig, |
| 1307 | rstorage: ResultStorage) -> Iterator[Tuple[str, str, HTMLBlock]]: |
| 1308 | |
| 1309 | # TODO: fix this hardcode, need to track what devices are actually used on test and storage nodes |
| 1310 | # use saved storage info in nodes |
| 1311 | |
| 1312 | journal_devs = None |
| 1313 | storage_devs = None |
| 1314 | test_nodes_devs = ['rbd0'] |
| 1315 | |
| 1316 | for node in find_nodes_by_roles(rstorage, STORAGE_ROLES): |
| 1317 | cjd = set(node.params['ceph_journal_devs']) |
| 1318 | if journal_devs is None: |
| 1319 | journal_devs = cjd |
| 1320 | else: |
| 1321 | assert journal_devs == cjd, "{!r} != {!r}".format(journal_devs, cjd) |
| 1322 | |
| 1323 | csd = set(node.params['ceph_storage_devs']) |
| 1324 | if storage_devs is None: |
| 1325 | storage_devs = csd |
| 1326 | else: |
| 1327 | assert storage_devs == csd, "{!r} != {!r}".format(storage_devs, csd) |
| 1328 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 1329 | trange = (job.reliable_info_range[0] // 1000, job.reliable_info_range[1] // 1000) |
| 1330 | |
| 1331 | for name, devs, roles in [('storage', storage_devs, STORAGE_ROLES), |
| 1332 | ('journal', journal_devs, STORAGE_ROLES), |
| 1333 | ('test', test_nodes_devs, ['testnode'])]: |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1334 | |
| 1335 | yield Menu1st.per_job, job.summary, \ |
| 1336 | HTMLBlock(html.H2(html.center("{} IO heatmaps".format(name.capitalize())))) |
| 1337 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 1338 | # QD heatmap |
| 1339 | ioq2d = find_sensors_to_2d(rstorage, roles, sensor='block-io', devs=devs, |
| 1340 | metric='io_queue', time_range=trange) |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1341 | |
| 1342 | ds = DataSource(suite.storage_id, job.storage_id, AGG_TAG, 'block-io', name, tag="hmap." + default_format) |
| 1343 | |
| 1344 | fname = plot_hmap_from_2d(rstorage, |
| 1345 | ds(metric='io_queue'), |
| 1346 | ioq2d, |
| 1347 | ylabel="IO QD", |
| 1348 | title=name.capitalize() + " devs QD", |
| 1349 | xlabel='Time', |
| 1350 | bins=StyleProfile.qd_bins) # type: str |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 1351 | yield Menu1st.per_job, job.summary, HTMLBlock(html.img(fname)) |
| 1352 | |
| 1353 | # Block size heatmap |
| 1354 | wc2d = find_sensors_to_2d(rstorage, roles, sensor='block-io', devs=devs, |
| 1355 | metric='writes_completed', time_range=trange) |
| 1356 | wc2d[wc2d < 1E-3] = 1 |
| 1357 | sw2d = find_sensors_to_2d(rstorage, roles, sensor='block-io', devs=devs, |
| 1358 | metric='sectors_written', time_range=trange) |
| 1359 | data2d = sw2d / wc2d / 1024 |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1360 | fname = plot_hmap_from_2d(rstorage, |
| 1361 | ds(metric='wr_block_size'), |
| 1362 | data2d, |
| 1363 | ylabel="IO bsize, KiB", |
| 1364 | title=name.capitalize() + " write block size", |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 1365 | xlabel='Time', |
| 1366 | bins=StyleProfile.block_size_bins) # type: str |
| 1367 | yield Menu1st.per_job, job.summary, HTMLBlock(html.img(fname)) |
| 1368 | |
| 1369 | # iotime heatmap |
| 1370 | wtime2d = find_sensors_to_2d(rstorage, roles, sensor='block-io', devs=devs, |
| 1371 | metric='io_time', time_range=trange) |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1372 | fname = plot_hmap_from_2d(rstorage, |
| 1373 | ds(metric='io_time'), |
| 1374 | wtime2d, |
| 1375 | ylabel="IO time (ms) per second", |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 1376 | title=name.capitalize() + " iotime", |
| 1377 | xlabel='Time', |
| 1378 | bins=StyleProfile.iotime_bins) # type: str |
| 1379 | yield Menu1st.per_job, job.summary, HTMLBlock(html.img(fname)) |
| 1380 | |
| 1381 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1382 | # IOPS/latency over test time for each job |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1383 | class LoadToolResults(JobReporter): |
koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 1384 | """IOPS/latency during test""" |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1385 | suite_types = {'fio'} |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1386 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1387 | def get_divs(self, |
| 1388 | suite: SuiteConfig, |
| 1389 | job: JobConfig, |
| 1390 | rstorage: ResultStorage) -> Iterator[Tuple[str, str, HTMLBlock]]: |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1391 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1392 | fjob = cast(FioJobConfig, job) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1393 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1394 | yield Menu1st.per_job, job.summary, HTMLBlock(html.H2(html.center("Load tool results"))) |
| 1395 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1396 | agg_io = get_aggregated(rstorage, suite, fjob, "bw") |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1397 | if fjob.bsize >= DefStyleProfile.large_blocks: |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 1398 | title = "Fio measured Bandwidth over time" |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1399 | units = "MiBps" |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 1400 | agg_io.data //= int(unit_conversion_coef(units, agg_io.units)) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1401 | else: |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 1402 | title = "Fio measured IOPS over time" |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 1403 | agg_io.data //= (int(unit_conversion_coef("KiBps", agg_io.units)) * fjob.bsize) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1404 | units = "IOPS" |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1405 | |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 1406 | fpath = plot_v_over_time(rstorage, agg_io.source(tag='ts.' + default_format), title, units, agg_io) # type: str |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1407 | yield Menu1st.per_job, fjob.summary, HTMLBlock(html.img(fpath)) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1408 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 1409 | agg_lat = get_aggregated(rstorage, suite, fjob, "lat").copy() |
| 1410 | TARGET_UNITS = 'ms' |
| 1411 | coef = unit_conversion_coef(agg_lat.units, TARGET_UNITS) |
| 1412 | agg_lat.histo_bins = agg_lat.histo_bins.copy() * float(coef) |
| 1413 | agg_lat.units = TARGET_UNITS |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1414 | |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 1415 | fpath = plot_lat_over_time(rstorage, agg_lat.source(tag='ts.' + default_format), "Latency", |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 1416 | agg_lat, ylabel="Latency, " + agg_lat.units) # type: str |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1417 | yield Menu1st.per_job, fjob.summary, HTMLBlock(html.img(fpath)) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1418 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 1419 | fpath = plot_histo_heatmap(rstorage, |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 1420 | agg_lat.source(tag='hmap.' + default_format), |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 1421 | "Latency heatmap", |
| 1422 | agg_lat, |
| 1423 | ylabel="Latency, " + agg_lat.units, |
| 1424 | xlabel='Test time') # type: str |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1425 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1426 | yield Menu1st.per_job, fjob.summary, HTMLBlock(html.img(fpath)) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1427 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1428 | fjob = cast(FioJobConfig, job) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1429 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1430 | # agg_lat = get_aggregated(rstorage, suite, fjob, "lat") |
| 1431 | # # bins_edges = numpy.array(get_lat_vals(agg_lat.data.shape[1]), dtype='float32') / 1000 # convert us to ms |
| 1432 | # lat_stat_prop = calc_histo_stat_props(agg_lat, bins_edges=None, rebins_count=StyleProfile.hist_lat_boxes) |
| 1433 | # |
| 1434 | # long_summary = cast(FioJobParams, fjob.params).long_summary |
| 1435 | # |
| 1436 | # title = "Latency distribution" |
| 1437 | # units = "ms" |
| 1438 | # |
| 1439 | # fpath = plot_hist(rstorage, agg_lat.source(tag='hist.svg'), title, units, lat_stat_prop) # type: str |
| 1440 | # yield Menu1st.per_job, fjob.summary, HTMLBlock(html.img(fpath)) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1441 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1442 | agg_io = get_aggregated(rstorage, suite, fjob, "bw") |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1443 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1444 | if fjob.bsize >= DefStyleProfile.large_blocks: |
| 1445 | title = "BW distribution" |
| 1446 | units = "MiBps" |
| 1447 | agg_io.data //= int(unit_conversion_coef(units, agg_io.units)) |
| 1448 | else: |
| 1449 | title = "IOPS distribution" |
| 1450 | agg_io.data //= (int(unit_conversion_coef("KiBps", agg_io.units)) * fjob.bsize) |
| 1451 | units = "IOPS" |
| 1452 | |
| 1453 | io_stat_prop = calc_norm_stat_props(agg_io, bins_count=StyleProfile.hist_boxes) |
| 1454 | fpath = plot_hist(rstorage, agg_io.source(tag='hist.' + default_format), |
| 1455 | title, units, io_stat_prop) # type: str |
| 1456 | yield Menu1st.per_job, fjob.summary, HTMLBlock(html.img(fpath)) |
koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 1457 | |
| 1458 | |
| 1459 | # Cluster load over test time |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1460 | class ClusterLoad(JobReporter): |
koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 1461 | """IOPS/latency during test""" |
| 1462 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1463 | # TODO: units should came from sensor |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1464 | storage_sensors = [ |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 1465 | ('block-io', 'reads_completed', "Read", 'iop'), |
| 1466 | ('block-io', 'writes_completed', "Write", 'iop'), |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1467 | ('block-io', 'sectors_read', "Read", 'MiB'), |
| 1468 | ('block-io', 'sectors_written', "Write", 'MiB'), |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1469 | ] |
| 1470 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1471 | def get_divs(self, |
| 1472 | suite: SuiteConfig, |
| 1473 | job: JobConfig, |
| 1474 | rstorage: ResultStorage) -> Iterator[Tuple[str, str, HTMLBlock]]: |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1475 | yield Menu1st.per_job, job.summary, HTMLBlock(html.H2(html.center("Cluster load"))) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1476 | |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 1477 | for sensor, metric, op, units in self.storage_sensors: |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1478 | ts = summ_sensors(rstorage, STORAGE_ROLES, sensor, metric, job.reliable_info_range_s) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1479 | ds = DataSource(suite_id=suite.storage_id, |
| 1480 | job_id=job.storage_id, |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1481 | node_id="storage", |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1482 | sensor=sensor, |
| 1483 | dev=AGG_TAG, |
| 1484 | metric=metric, |
kdanylov aka koder | 4e4af68 | 2017-05-01 01:52:14 +0300 | [diff] [blame] | 1485 | tag="ts." + default_format) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1486 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1487 | data = ts.data if units != 'MiB' else ts.data * float(unit_conversion_coef(ts.units, 'MiB')) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1488 | ts = TimeSeries(name="", |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 1489 | times=numpy.arange(*job.reliable_info_range_s), |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 1490 | data=data, |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1491 | raw=None, |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 1492 | units=units if ts.units is None else ts.units, |
| 1493 | time_units=ts.time_units, |
| 1494 | source=ds, |
| 1495 | histo_bins=ts.histo_bins) |
kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame] | 1496 | |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 1497 | sensor_title = "{} {}".format(op, units) |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1498 | fpath = plot_v_over_time(rstorage, ds, sensor_title, units, ts=ts) # type: str |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1499 | yield Menu1st.per_job, job.summary, HTMLBlock(html.img(fpath)) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1500 | |
| 1501 | |
koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 1502 | |
| 1503 | # Node load over test time |
| 1504 | class NodeLoad(Reporter): |
| 1505 | """IOPS/latency during test""" |
| 1506 | |
| 1507 | |
| 1508 | # Ceph cluster summary |
| 1509 | class CephClusterSummary(Reporter): |
| 1510 | """IOPS/latency during test""" |
| 1511 | |
| 1512 | |
koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 1513 | # TODO: Ceph operation breakout report |
| 1514 | # TODO: Resource consumption for different type of test |
| 1515 | |
| 1516 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1517 | # ------------------------------------------ REPORT STAGES ----------------------------------------------------------- |
| 1518 | |
| 1519 | |
| 1520 | class HtmlReportStage(Stage): |
| 1521 | priority = StepOrder.REPORT |
| 1522 | |
| 1523 | def run(self, ctx: TestRun) -> None: |
| 1524 | rstorage = ResultStorage(ctx.storage) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1525 | |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1526 | job_reporters = [StatInfo(), Resources(), LoadToolResults(), ClusterLoad(), CPULoadPlot(), |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 1527 | QDIOTimeHeatmap()] # type: List[JobReporter] |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1528 | # job_reporters = [QDIOTimeHeatmap()] # type: List[JobReporter] |
| 1529 | # job_reporters = [] |
| 1530 | reporters = [IO_QD()] # type: List[Reporter] |
| 1531 | # reporters = [] # type: List[Reporter] |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1532 | |
| 1533 | root_dir = os.path.dirname(os.path.dirname(wally.__file__)) |
| 1534 | doc_templ_path = os.path.join(root_dir, "report_templates/index.html") |
| 1535 | report_template = open(doc_templ_path, "rt").read() |
| 1536 | css_file_src = os.path.join(root_dir, "report_templates/main.css") |
| 1537 | css_file = open(css_file_src, "rt").read() |
| 1538 | |
| 1539 | menu_block = [] |
| 1540 | content_block = [] |
| 1541 | link_idx = 0 |
| 1542 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1543 | # matplotlib.rcParams.update(ctx.config.reporting.matplotlib_params.raw()) |
| 1544 | # ColorProfile.__dict__.update(ctx.config.reporting.colors.raw()) |
| 1545 | # StyleProfile.__dict__.update(ctx.config.reporting.style.raw()) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1546 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1547 | items = defaultdict(lambda: defaultdict(list)) # type: Dict[str, Dict[str, List[HTMLBlock]]] |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 1548 | DEBUG = False |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1549 | # TODO: filter reporters |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1550 | for suite in rstorage.iter_suite(FioTest.name): |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1551 | all_jobs = list(rstorage.iter_job(suite)) |
| 1552 | all_jobs.sort(key=lambda job: job.params) |
| 1553 | for job in all_jobs: |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1554 | if 'rwd16384_qd1' == job.summary: |
| 1555 | try: |
| 1556 | for reporter in job_reporters: |
| 1557 | logger.debug("Start reporter %s on job %s suite %s", |
| 1558 | reporter.__class__.__name__, job.summary, suite.test_type) |
| 1559 | for block, item, html in reporter.get_divs(suite, job, rstorage): |
| 1560 | items[block][item].append(html) |
| 1561 | if DEBUG: |
| 1562 | break |
| 1563 | except Exception: |
| 1564 | logger.exception("Failed to generate report for %s", job) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1565 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1566 | for reporter in reporters: |
kdanylov aka koder | 736e5c1 | 2017-05-07 17:27:14 +0300 | [diff] [blame^] | 1567 | try: |
| 1568 | logger.debug("Start reporter %s on suite %s", reporter.__class__.__name__, suite.test_type) |
| 1569 | for block, item, html in reporter.get_divs(suite, rstorage): |
| 1570 | items[block][item].append(html) |
| 1571 | except Exception as exc: |
| 1572 | logger.exception("Failed to generate report") |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1573 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1574 | if DEBUG: |
| 1575 | break |
| 1576 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 1577 | logger.debug("Generating result html") |
| 1578 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1579 | for idx_1st, menu_1st in enumerate(sorted(items, key=lambda x: menu_1st_order.index(x))): |
| 1580 | menu_block.append( |
| 1581 | '<a href="#item{}" class="nav-group" data-toggle="collapse" data-parent="#MainMenu">{}</a>' |
| 1582 | .format(idx_1st, menu_1st) |
| 1583 | ) |
| 1584 | menu_block.append('<div class="collapse" id="item{}">'.format(idx_1st)) |
| 1585 | for menu_2nd in sorted(items[menu_1st]): |
| 1586 | menu_block.append(' <a href="#content{}" class="nav-group-item">{}</a>' |
| 1587 | .format(link_idx, menu_2nd)) |
| 1588 | content_block.append('<div id="content{}">'.format(link_idx)) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1589 | content_block.extend(" " + x.data for x in items[menu_1st][menu_2nd]) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1590 | content_block.append('</div>') |
| 1591 | link_idx += 1 |
| 1592 | menu_block.append('</div>') |
| 1593 | |
| 1594 | report = report_template.replace("{{{menu}}}", ("\n" + " " * 16).join(menu_block)) |
| 1595 | report = report.replace("{{{content}}}", ("\n" + " " * 16).join(content_block)) |
| 1596 | report_path = rstorage.put_report(report, "index.html") |
| 1597 | rstorage.put_report(css_file, "main.css") |
| 1598 | logger.info("Report is stored into %r", report_path) |