| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1 | import os | 
| koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 2 | import abc | 
| koder aka kdanilov | a047e1b | 2015-04-21 23:16:59 +0300 | [diff] [blame] | 3 | import logging | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 4 | from io import BytesIO | 
 | 5 | from functools import wraps | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 6 | from typing import Dict, Any, Iterator, Tuple, cast, List, Callable, Set, Optional | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 7 | from collections import defaultdict | 
| koder aka kdanilov | cff7b2e | 2015-04-18 20:48:15 +0300 | [diff] [blame] | 8 |  | 
| koder aka kdanilov | ffaf48d | 2016-12-27 02:25:29 +0200 | [diff] [blame] | 9 | import numpy | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 10 | import scipy.stats | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 11 | import matplotlib.pyplot as plt | 
| koder aka kdanilov | be8f89f | 2015-04-28 14:51:51 +0300 | [diff] [blame] | 12 |  | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 13 | import wally | 
| koder aka kdanilov | ffaf48d | 2016-12-27 02:25:29 +0200 | [diff] [blame] | 14 |  | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 15 | from . import html | 
| koder aka kdanilov | 39e449e | 2016-12-17 15:15:26 +0200 | [diff] [blame] | 16 | from .stage import Stage, StepOrder | 
 | 17 | from .test_run_class import TestRun | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 18 | from .hlstorage import ResultStorage | 
 | 19 | from .node_interfaces import NodeInfo | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 20 | from .utils import b2ssize, b2ssize_10, STORAGE_ROLES | 
 | 21 | from .statistic import (calc_norm_stat_props, calc_histo_stat_props, moving_average, moving_dev, | 
| kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame^] | 22 |                         hist_outliers_perc, ts_hist_outliers_perc, find_ouliers_ts, approximate_curve) | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 23 | from .result_classes import (StatProps, DataSource, TimeSeries, NormStatProps, HistoStatProps, SuiteConfig, | 
 | 24 |                              IResultStorage) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 25 | from .suits.io.fio_hist import get_lat_vals, expected_lat_bins | 
 | 26 | from .suits.io.fio import FioTest, FioJobConfig | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 27 | from .suits.io.fio_job import FioJobParams | 
 | 28 | from .suits.job import JobConfig | 
| koder aka kdanilov | cff7b2e | 2015-04-18 20:48:15 +0300 | [diff] [blame] | 29 |  | 
| koder aka kdanilov | 4a510ee | 2015-04-21 18:50:42 +0300 | [diff] [blame] | 30 |  | 
| koder aka kdanilov | 962ee5f | 2016-12-19 02:40:08 +0200 | [diff] [blame] | 31 | logger = logging.getLogger("wally") | 
| koder aka kdanilov | a047e1b | 2015-04-21 23:16:59 +0300 | [diff] [blame] | 32 |  | 
 | 33 |  | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 34 | # ----------------  CONSTS --------------------------------------------------------------------------------------------- | 
| koder aka kdanilov | 39e449e | 2016-12-17 15:15:26 +0200 | [diff] [blame] | 35 |  | 
| koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 36 |  | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 37 | DEBUG = False | 
 | 38 | LARGE_BLOCKS = 256 | 
 | 39 | MiB2KiB = 1024 | 
 | 40 | MS2S = 1000 | 
| koder aka kdanilov | 39e449e | 2016-12-17 15:15:26 +0200 | [diff] [blame] | 41 |  | 
| koder aka kdanilov | 39e449e | 2016-12-17 15:15:26 +0200 | [diff] [blame] | 42 |  | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 43 | # ----------------  PROFILES  ------------------------------------------------------------------------------------------ | 
 | 44 |  | 
 | 45 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 46 | # this is default values, real values is loaded from config | 
 | 47 |  | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 48 | class ColorProfile: | 
 | 49 |     primary_color = 'b' | 
 | 50 |     suppl_color1 = 'teal' | 
 | 51 |     suppl_color2 = 'magenta' | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 52 |     suppl_color3 = 'orange' | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 53 |     box_color = 'y' | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 54 |     err_color = 'red' | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 55 |  | 
 | 56 |     noise_alpha = 0.3 | 
 | 57 |     subinfo_alpha = 0.7 | 
 | 58 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 59 |     imshow_colormap = None  # type: str | 
 | 60 |  | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 61 |  | 
 | 62 | class StyleProfile: | 
 | 63 |     grid = True | 
 | 64 |     tide_layout = True | 
 | 65 |     hist_boxes = 10 | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 66 |     hist_lat_boxes = 25 | 
 | 67 |     hm_hist_bins_count = 25 | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 68 |     min_points_for_dev = 5 | 
 | 69 |  | 
 | 70 |     dev_range_x = 2.0 | 
 | 71 |     dev_perc = 95 | 
 | 72 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 73 |     point_shape = 'o' | 
 | 74 |     err_point_shape = '*' | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 75 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 76 |     avg_range = 20 | 
 | 77 |     approx_average = True | 
 | 78 |  | 
 | 79 |     curve_approx_level = 6 | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 80 |     curve_approx_points = 100 | 
 | 81 |     assert avg_range >= min_points_for_dev | 
 | 82 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 83 |     # figure size in inches | 
 | 84 |     figsize = (10, 6) | 
 | 85 |  | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 86 |     extra_io_spine = True | 
 | 87 |  | 
 | 88 |     legend_for_eng = True | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 89 |     heatmap_interpolation = '1d' | 
 | 90 |     heatmap_interpolation_points = 300 | 
 | 91 |     outliers_q_nd = 3.0 | 
 | 92 |     outliers_hide_q_nd = 4.0 | 
 | 93 |     outliers_lat = (0.01, 0.995) | 
 | 94 |  | 
 | 95 |     violin_instead_of_box = True | 
 | 96 |     violin_point_count = 30000 | 
 | 97 |  | 
 | 98 |     heatmap_colorbar = False | 
 | 99 |  | 
 | 100 |     min_iops_vs_qd_jobs = 3 | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 101 |  | 
 | 102 |     units = { | 
 | 103 |         'bw': ("MiBps", MiB2KiB, "bandwith"), | 
 | 104 |         'iops': ("IOPS", 1, "iops"), | 
 | 105 |         'lat': ("ms", 1, "latency") | 
 | 106 |     } | 
 | 107 |  | 
 | 108 |  | 
 | 109 | # ----------------  STRUCTS  ------------------------------------------------------------------------------------------- | 
| koder aka kdanilov | 39e449e | 2016-12-17 15:15:26 +0200 | [diff] [blame] | 110 |  | 
| koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 111 |  | 
 | 112 | # TODO: need to be revised, have to user StatProps fields instead | 
 | 113 | class StoragePerfSummary: | 
 | 114 |     def __init__(self, name: str) -> None: | 
 | 115 |         self.direct_iops_r_max = 0  # type: int | 
 | 116 |         self.direct_iops_w_max = 0  # type: int | 
 | 117 |  | 
 | 118 |         # 64 used instead of 4k to faster feed caches | 
 | 119 |         self.direct_iops_w64_max = 0  # type: int | 
 | 120 |  | 
 | 121 |         self.rws4k_10ms = 0  # type: int | 
 | 122 |         self.rws4k_30ms = 0  # type: int | 
 | 123 |         self.rws4k_100ms = 0  # type: int | 
 | 124 |         self.bw_write_max = 0  # type: int | 
 | 125 |         self.bw_read_max = 0  # type: int | 
 | 126 |  | 
 | 127 |         self.bw = None  # type: float | 
 | 128 |         self.iops = None  # type: float | 
 | 129 |         self.lat = None  # type: float | 
 | 130 |         self.lat_50 = None  # type: float | 
 | 131 |         self.lat_95 = None  # type: float | 
 | 132 |  | 
 | 133 |  | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 134 | class IOSummary: | 
 | 135 |     def __init__(self, | 
 | 136 |                  qd: int, | 
 | 137 |                  block_size: int, | 
 | 138 |                  nodes_count:int, | 
 | 139 |                  bw: NormStatProps, | 
 | 140 |                  lat: HistoStatProps) -> None: | 
 | 141 |  | 
 | 142 |         self.qd = qd | 
 | 143 |         self.nodes_count = nodes_count | 
 | 144 |         self.block_size = block_size | 
 | 145 |  | 
 | 146 |         self.bw = bw | 
 | 147 |         self.lat = lat | 
 | 148 |  | 
 | 149 |  | 
 | 150 | # --------------  AGGREGATION AND STAT FUNCTIONS  ---------------------------------------------------------------------- | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 151 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 152 | def make_iosum(rstorage: ResultStorage, suite: SuiteConfig, job: FioJobConfig) -> IOSummary: | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 153 |     lat = get_aggregated(rstorage, suite, job, "lat") | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 154 |     bins_edges = numpy.array(get_lat_vals(lat.data.shape[1]), dtype='float32') / 1000 | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 155 |     io = get_aggregated(rstorage, suite, job, "bw") | 
 | 156 |  | 
 | 157 |     return IOSummary(job.qd, | 
 | 158 |                      nodes_count=len(suite.nodes_ids), | 
 | 159 |                      block_size=job.bsize, | 
| kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame^] | 160 |                      lat=calc_histo_stat_props(lat, bins_edges, rebins_count=StyleProfile.hist_boxes), | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 161 |                      bw=calc_norm_stat_props(io, StyleProfile.hist_boxes)) | 
 | 162 |  | 
 | 163 | # | 
 | 164 | # def iter_io_results(rstorage: ResultStorage, | 
 | 165 | #                     qds: List[int] = None, | 
 | 166 | #                     op_types: List[str] = None, | 
 | 167 | #                     sync_types: List[str] = None, | 
 | 168 | #                     block_sizes: List[int] = None) -> Iterator[Tuple[TestSuiteConfig, FioJobConfig]]: | 
 | 169 | # | 
 | 170 | #     for suite in rstorage.iter_suite(FioTest.name): | 
 | 171 | #         for job in rstorage.iter_job(suite): | 
 | 172 | #             fjob = cast(FioJobConfig, job) | 
 | 173 | #             assert int(fjob.vals['numjobs']) == 1 | 
 | 174 | # | 
 | 175 | #             if sync_types is not None and fjob.sync_mode in sync_types: | 
 | 176 | #                 continue | 
 | 177 | # | 
 | 178 | #             if block_sizes is not None and fjob.bsize not in block_sizes: | 
 | 179 | #                 continue | 
 | 180 | # | 
 | 181 | #             if op_types is not None and fjob.op_type not in op_types: | 
 | 182 | #                 continue | 
 | 183 | # | 
 | 184 | #             if qds is not None and fjob.qd not in qds: | 
 | 185 | #                 continue | 
 | 186 | # | 
 | 187 | #             yield suite, fjob | 
 | 188 |  | 
 | 189 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 190 | AGG_TAG = 'ALL' | 
 | 191 |  | 
 | 192 |  | 
 | 193 | def get_aggregated(rstorage: ResultStorage, suite: SuiteConfig, job: FioJobConfig, metric: str) -> TimeSeries: | 
| kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame^] | 194 |     tss = list(rstorage.iter_ts(suite, job, metric=metric)) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 195 |     ds = DataSource(suite_id=suite.storage_id, | 
 | 196 |                     job_id=job.storage_id, | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 197 |                     node_id=AGG_TAG, | 
 | 198 |                     sensor='fio', | 
 | 199 |                     dev=AGG_TAG, | 
 | 200 |                     metric=metric, | 
 | 201 |                     tag='csv') | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 202 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 203 |     agg_ts = TimeSeries(metric, | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 204 |                         raw=None, | 
 | 205 |                         source=ds, | 
 | 206 |                         data=numpy.zeros(tss[0].data.shape, dtype=tss[0].data.dtype), | 
 | 207 |                         times=tss[0].times.copy(), | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 208 |                         units=tss[0].units) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 209 |  | 
 | 210 |     for ts in tss: | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 211 |         if metric == 'lat' and (len(ts.data.shape) != 2 or ts.data.shape[1] != expected_lat_bins): | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 212 |             logger.error("Sensor %s.%s on node %s has" + | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 213 |                          "shape=%s. Can only process sensors with shape=[X, %s].", | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 214 |                          ts.source.dev, ts.source.sensor, ts.source.node_id, | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 215 |                          ts.data.shape, expected_lat_bins) | 
| kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame^] | 216 |             raise ValueError() | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 217 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 218 |         if metric != 'lat' and len(ts.data.shape) != 1: | 
| kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame^] | 219 |             logger.error("Sensor %s.%s on node %s has " + | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 220 |                          "shape=%s. Can only process 1D sensors.", | 
 | 221 |                          ts.source.dev, ts.source.sensor, ts.source.node_id, ts.data.shape) | 
| kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame^] | 222 |             raise ValueError() | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 223 |  | 
 | 224 |         # TODO: match times on different ts | 
 | 225 |         agg_ts.data += ts.data | 
 | 226 |  | 
 | 227 |     return agg_ts | 
 | 228 |  | 
 | 229 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 230 | def is_sensor_numarray(sensor: str, metric: str) -> bool: | 
 | 231 |     """Returns True if sensor provides one-dimension array of numeric values. One number per one measurement.""" | 
 | 232 |     return True | 
 | 233 |  | 
 | 234 |  | 
 | 235 | LEVEL_SENSORS = {("block-io", "io_queue"), | 
 | 236 |                  ("system-cpu", "procs_blocked"), | 
 | 237 |                  ("system-cpu", "procs_queue")} | 
 | 238 |  | 
 | 239 |  | 
 | 240 | def is_level_sensor(sensor: str, metric: str) -> bool: | 
 | 241 |     """Returns True if sensor measure level of any kind, E.g. queue depth.""" | 
 | 242 |     return (sensor, metric) in LEVEL_SENSORS | 
 | 243 |  | 
 | 244 |  | 
 | 245 | def is_delta_sensor(sensor: str, metric: str) -> bool: | 
 | 246 |     """Returns True if sensor provides deltas for cumulative value. E.g. io completed in given period""" | 
 | 247 |     return not is_level_sensor(sensor, metric) | 
 | 248 |  | 
 | 249 |  | 
 | 250 | def get_sensor_for_time_range(storage: IResultStorage, | 
 | 251 |                               node_id: str, | 
 | 252 |                               sensor: str, | 
 | 253 |                               dev: str, | 
 | 254 |                               metric: str, | 
 | 255 |                               time_range: Tuple[int, int]) -> numpy.array: | 
 | 256 |     """Return sensor values for given node for given period. Return per second estimated values array | 
 | 257 |  | 
 | 258 |     Raise an error if required range is not full covered by data in storage. | 
 | 259 |     First it finds range of results from sensor, which fully covers requested range. | 
 | 260 |     ....""" | 
 | 261 |  | 
 | 262 |     ds = DataSource(node_id=node_id, sensor=sensor, dev=dev, metric=metric) | 
 | 263 |     sensor_data = storage.load_sensor(ds) | 
 | 264 |     assert sensor_data.time_units == 'us' | 
 | 265 |  | 
 | 266 |     # collected_at is array of pairs (collection_started_at, collection_finished_at) | 
 | 267 |     # extract start time from each pair | 
 | 268 |     collection_start_at = sensor_data.times[::2]  # type: numpy.array | 
 | 269 |  | 
 | 270 |     MICRO = 1000000 | 
 | 271 |  | 
 | 272 |     # convert seconds to us | 
 | 273 |     begin = time_range[0] * MICRO | 
 | 274 |     end = time_range[1] * MICRO | 
 | 275 |  | 
 | 276 |     if begin < collection_start_at[0] or end > collection_start_at[-1] or end <= begin: | 
 | 277 |         raise AssertionError(("Incorrect data for get_sensor - time_range={!r}, collected_at=[{}, ..., {}]," + | 
 | 278 |                               "sensor = {}_{}.{}.{}").format(time_range, | 
 | 279 |                                                              sensor_data.times[0] // MICRO, | 
 | 280 |                                                              sensor_data.times[-1] // MICRO, | 
 | 281 |                                                              node_id, sensor, dev, metric)) | 
 | 282 |  | 
 | 283 |     pos1, pos2 = numpy.searchsorted(collection_start_at, (begin, end)) | 
 | 284 |  | 
 | 285 |     # current real data time chunk begin time | 
 | 286 |     edge_it = iter(collection_start_at[pos1 - 1: pos2 + 1]) | 
 | 287 |  | 
 | 288 |     # current real data value | 
 | 289 |     val_it = iter(sensor_data.data[pos1 - 1: pos2 + 1]) | 
 | 290 |  | 
 | 291 |     # result array, cumulative value per second | 
| kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame^] | 292 |     result = numpy.zeros(int(end - begin) // MICRO) | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 293 |     idx = 0 | 
 | 294 |     curr_summ = 0 | 
 | 295 |  | 
 | 296 |     # end of current time slot | 
 | 297 |     results_cell_ends = begin + MICRO | 
 | 298 |  | 
 | 299 |     # hack to unify looping | 
 | 300 |     real_data_end = next(edge_it) | 
 | 301 |     while results_cell_ends <= end: | 
 | 302 |         real_data_start = real_data_end | 
 | 303 |         real_data_end = next(edge_it) | 
 | 304 |         real_val_left = next(val_it) | 
 | 305 |  | 
 | 306 |         # real data "speed" for interval [real_data_start, real_data_end] | 
 | 307 |         real_val_ps = float(real_val_left) / (real_data_end - real_data_start) | 
 | 308 |  | 
 | 309 |         while real_data_end >= results_cell_ends and results_cell_ends <= end: | 
 | 310 |             # part of current real value, which is fit into current result cell | 
 | 311 |             curr_real_chunk = int((results_cell_ends - real_data_start) * real_val_ps) | 
 | 312 |  | 
 | 313 |             # calculate rest of real data for next result cell | 
 | 314 |             real_val_left -= curr_real_chunk | 
 | 315 |             result[idx] = curr_summ + curr_real_chunk | 
 | 316 |             idx += 1 | 
 | 317 |             curr_summ = 0 | 
 | 318 |  | 
 | 319 |             # adjust real data start time | 
 | 320 |             real_data_start = results_cell_ends | 
 | 321 |             results_cell_ends += MICRO | 
 | 322 |  | 
 | 323 |         # don't lost any real data | 
 | 324 |         curr_summ += real_val_left | 
 | 325 |  | 
 | 326 |     return result | 
 | 327 |  | 
 | 328 |  | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 329 | # --------------  PLOT HELPERS FUNCTIONS  ------------------------------------------------------------------------------ | 
 | 330 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 331 | def get_emb_data_svg(plt: Any, format: str = 'svg') -> bytes: | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 332 |     bio = BytesIO() | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 333 |     if format in ('png', 'jpg'): | 
 | 334 |         plt.savefig(bio, format=format) | 
 | 335 |         return bio.getvalue() | 
 | 336 |     elif format == 'svg': | 
 | 337 |         plt.savefig(bio, format='svg') | 
 | 338 |         img_start = "<!-- Created with matplotlib (http://matplotlib.org/) -->" | 
 | 339 |         return bio.getvalue().decode("utf8").split(img_start, 1)[1].encode("utf8") | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 340 |  | 
 | 341 |  | 
 | 342 | def provide_plot(func: Callable[..., None]) -> Callable[..., str]: | 
 | 343 |     @wraps(func) | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 344 |     def closure1(storage: ResultStorage, | 
 | 345 |                  path: DataSource, | 
 | 346 |                  *args, **kwargs) -> str: | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 347 |         fpath = storage.check_plot_file(path) | 
 | 348 |         if not fpath: | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 349 |             format = path.tag.split(".")[-1] | 
 | 350 |  | 
 | 351 |             plt.figure(figsize=StyleProfile.figsize) | 
 | 352 |             plt.subplots_adjust(right=0.66) | 
 | 353 |  | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 354 |             func(*args, **kwargs) | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 355 |             fpath = storage.put_plot_file(get_emb_data_svg(plt, format=format), path) | 
 | 356 |             logger.debug("Plot %s saved to %r", path, fpath) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 357 |             plt.clf() | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 358 |             plt.close('all') | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 359 |         return fpath | 
 | 360 |     return closure1 | 
 | 361 |  | 
 | 362 |  | 
 | 363 | def apply_style(style: StyleProfile, eng: bool = True, no_legend: bool = False) -> None: | 
 | 364 |     if style.grid: | 
 | 365 |         plt.grid(True) | 
 | 366 |  | 
 | 367 |     if (style.legend_for_eng or not eng) and not no_legend: | 
 | 368 |         legend_location = "center left" | 
 | 369 |         legend_bbox_to_anchor = (1.03, 0.81) | 
 | 370 |         plt.legend(loc=legend_location, bbox_to_anchor=legend_bbox_to_anchor) | 
 | 371 |  | 
 | 372 |  | 
 | 373 | # --------------  PLOT FUNCTIONS  -------------------------------------------------------------------------------------- | 
 | 374 |  | 
 | 375 |  | 
 | 376 | @provide_plot | 
 | 377 | def plot_hist(title: str, units: str, | 
 | 378 |               prop: StatProps, | 
 | 379 |               colors: Any = ColorProfile, | 
 | 380 |               style: Any = StyleProfile) -> None: | 
 | 381 |  | 
 | 382 |     # TODO: unit should came from ts | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 383 |     normed_bins = prop.bins_populations / prop.bins_populations.sum() | 
 | 384 |     bar_width = prop.bins_edges[1] - prop.bins_edges[0] | 
 | 385 |     plt.bar(prop.bins_edges, normed_bins, color=colors.box_color, width=bar_width, label="Real data") | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 386 |  | 
 | 387 |     plt.xlabel(units) | 
 | 388 |     plt.ylabel("Value probability") | 
 | 389 |     plt.title(title) | 
 | 390 |  | 
 | 391 |     dist_plotted = False | 
 | 392 |     if isinstance(prop, NormStatProps): | 
 | 393 |         nprop = cast(NormStatProps, prop) | 
 | 394 |         stats = scipy.stats.norm(nprop.average, nprop.deviation) | 
 | 395 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 396 |         new_edges, step = numpy.linspace(prop.bins_edges[0], prop.bins_edges[-1], | 
 | 397 |                                          len(prop.bins_edges) * 10, retstep=True) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 398 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 399 |         ypoints = stats.cdf(new_edges) * 11 | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 400 |         ypoints = [next - prev for (next, prev) in zip(ypoints[1:], ypoints[:-1])] | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 401 |         xpoints = (new_edges[1:] + new_edges[:-1]) / 2 | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 402 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 403 |         plt.plot(xpoints, ypoints, color=colors.primary_color, label="Expected from\nnormal\ndistribution") | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 404 |         dist_plotted = True | 
 | 405 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 406 |     plt.gca().set_xlim(left=prop.bins_edges[0]) | 
 | 407 |     if prop.log_bins: | 
 | 408 |         plt.xscale('log') | 
 | 409 |  | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 410 |     apply_style(style, eng=True, no_legend=not dist_plotted) | 
 | 411 |  | 
 | 412 |  | 
 | 413 | @provide_plot | 
 | 414 | def plot_v_over_time(title: str, units: str, | 
 | 415 |                      ts: TimeSeries, | 
 | 416 |                      plot_avg_dev: bool = True, | 
 | 417 |                      colors: Any = ColorProfile, style: Any = StyleProfile) -> None: | 
 | 418 |  | 
 | 419 |     min_time = min(ts.times) | 
 | 420 |  | 
 | 421 |     # /1000 is us to ms conversion | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 422 |     time_points = numpy.array([(val_time - min_time) / 1000 for val_time in ts.times]) | 
 | 423 |  | 
 | 424 |     outliers_idxs = find_ouliers_ts(ts.data, cut_range=style.outliers_q_nd) | 
 | 425 |     outliers_4q_idxs = find_ouliers_ts(ts.data, cut_range=style.outliers_hide_q_nd) | 
 | 426 |     normal_idxs = numpy.logical_not(outliers_idxs) | 
 | 427 |     outliers_idxs = outliers_idxs & numpy.logical_not(outliers_4q_idxs) | 
 | 428 |     hidden_outliers_count = numpy.count_nonzero(outliers_4q_idxs) | 
 | 429 |  | 
 | 430 |     data = ts.data[normal_idxs] | 
 | 431 |     data_times = time_points[normal_idxs] | 
 | 432 |     outliers = ts.data[outliers_idxs] | 
 | 433 |     outliers_times = time_points[outliers_idxs] | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 434 |  | 
 | 435 |     alpha = colors.noise_alpha if plot_avg_dev else 1.0 | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 436 |     plt.plot(data_times, data, style.point_shape, | 
 | 437 |              color=colors.primary_color, alpha=alpha, label="Data") | 
 | 438 |     plt.plot(outliers_times, outliers, style.err_point_shape, | 
 | 439 |              color=colors.err_color, label="Outliers") | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 440 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 441 |     has_negative_dev = False | 
 | 442 |     plus_minus = "\xb1" | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 443 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 444 |     if plot_avg_dev and len(data) < style.avg_range * 2: | 
 | 445 |             logger.warning("Array %r to small to plot average over %s points", title, style.avg_range) | 
 | 446 |     elif plot_avg_dev: | 
 | 447 |         avg_vals = moving_average(data, style.avg_range) | 
 | 448 |         dev_vals = moving_dev(data, style.avg_range) | 
 | 449 |         avg_times = moving_average(data_times, style.avg_range) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 450 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 451 |         if style.approx_average: | 
 | 452 |             avg_vals = approximate_curve(avg_times, avg_vals, avg_times, style.curve_approx_level) | 
 | 453 |             dev_vals = approximate_curve(avg_times, dev_vals, avg_times, style.curve_approx_level) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 454 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 455 |         plt.plot(avg_times, avg_vals, c=colors.suppl_color1, label="Average") | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 456 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 457 |         low_vals_dev = avg_vals - dev_vals * style.dev_range_x | 
 | 458 |         hight_vals_dev = avg_vals + dev_vals * style.dev_range_x | 
 | 459 |         if style.dev_range_x - int(style.dev_range_x) < 0.01: | 
 | 460 |             plt.plot(avg_times, low_vals_dev, c=colors.suppl_color2, | 
 | 461 |                      label="{}{}*stdev".format(plus_minus, int(style.dev_range_x))) | 
 | 462 |         else: | 
 | 463 |             plt.plot(avg_times, low_vals_dev, c=colors.suppl_color2, | 
 | 464 |                      label="{}{}*stdev".format(plus_minus, style.dev_range_x)) | 
 | 465 |         plt.plot(avg_times, hight_vals_dev, c=colors.suppl_color2) | 
 | 466 |         has_negative_dev = low_vals_dev.min() < 0 | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 467 |  | 
 | 468 |     plt.xlim(-5, max(time_points) + 5) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 469 |     plt.xlabel("Time, seconds from test begin") | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 470 |     plt.ylabel("{}. Average and {}stddev over {} points".format(units, plus_minus, style.avg_range)) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 471 |     plt.title(title) | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 472 |  | 
 | 473 |     if has_negative_dev: | 
 | 474 |         plt.gca().set_ylim(bottom=0) | 
 | 475 |  | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 476 |     apply_style(style, eng=True) | 
 | 477 |  | 
 | 478 |  | 
 | 479 | @provide_plot | 
 | 480 | def plot_lat_over_time(title: str, ts: TimeSeries, bins_vals: List[int], samples: int = 5, | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 481 |                        colors: Any = ColorProfile, | 
 | 482 |                        style: Any = StyleProfile) -> None: | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 483 |  | 
 | 484 |     min_time = min(ts.times) | 
 | 485 |     times = [int(tm - min_time + 500) // 1000 for tm in ts.times] | 
 | 486 |     ts_len = len(times) | 
 | 487 |     step = ts_len / samples | 
 | 488 |     points = [times[int(i * step + 0.5)] for i in range(samples)] | 
 | 489 |     points.append(times[-1]) | 
 | 490 |     bounds = list(zip(points[:-1], points[1:])) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 491 |     agg_data = [] | 
 | 492 |     positions = [] | 
 | 493 |     labels = [] | 
 | 494 |  | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 495 |     for begin, end in bounds: | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 496 |         agg_hist = ts.data[begin:end].sum(axis=0) | 
 | 497 |  | 
 | 498 |         if style.violin_instead_of_box: | 
 | 499 |             # cut outliers | 
 | 500 |             idx1, idx2 = hist_outliers_perc(agg_hist, style.outliers_lat) | 
 | 501 |             agg_hist = agg_hist[idx1:idx2] | 
 | 502 |             curr_bins_vals = bins_vals[idx1:idx2] | 
 | 503 |  | 
 | 504 |             correct_coef = style.violin_point_count / sum(agg_hist) | 
 | 505 |             if correct_coef > 1: | 
 | 506 |                 correct_coef = 1 | 
 | 507 |         else: | 
 | 508 |             curr_bins_vals = bins_vals | 
 | 509 |             correct_coef = 1 | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 510 |  | 
 | 511 |         vals = numpy.empty(shape=(numpy.sum(agg_hist),), dtype='float32') | 
 | 512 |         cidx = 0 | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 513 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 514 |         non_zero, = agg_hist.nonzero() | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 515 |         for pos in non_zero: | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 516 |             count = int(agg_hist[pos] * correct_coef + 0.5) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 517 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 518 |             if count != 0: | 
 | 519 |                 vals[cidx: cidx + count] = curr_bins_vals[pos] | 
 | 520 |                 cidx += count | 
 | 521 |  | 
 | 522 |         agg_data.append(vals[:cidx]) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 523 |         positions.append((end + begin) / 2) | 
 | 524 |         labels.append(str((end + begin) // 2)) | 
 | 525 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 526 |     if style.violin_instead_of_box: | 
 | 527 |         patches = plt.violinplot(agg_data, | 
 | 528 |                                  positions=positions, | 
 | 529 |                                  showmeans=True, | 
 | 530 |                                  showmedians=True, | 
 | 531 |                                  widths=step / 2) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 532 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 533 |         patches['cmeans'].set_color("blue") | 
 | 534 |         patches['cmedians'].set_color("green") | 
 | 535 |         if style.legend_for_eng: | 
 | 536 |             legend_location = "center left" | 
 | 537 |             legend_bbox_to_anchor = (1.03, 0.81) | 
 | 538 |             plt.legend([patches['cmeans'], patches['cmedians']], ["mean", "median"], | 
 | 539 |                        loc=legend_location, bbox_to_anchor=legend_bbox_to_anchor) | 
 | 540 |     else: | 
 | 541 |         plt.boxplot(agg_data, 0, '', positions=positions, labels=labels, widths=step / 4) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 542 |  | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 543 |     plt.xlim(min(times), max(times)) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 544 |     plt.xlabel("Time, seconds from test begin, sampled for ~{} seconds".format(int(step))) | 
 | 545 |     plt.ylabel("Latency, ms") | 
 | 546 |     plt.title(title) | 
 | 547 |     apply_style(style, eng=True, no_legend=True) | 
 | 548 |  | 
 | 549 |  | 
 | 550 | @provide_plot | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 551 | def plot_heatmap(title: str, | 
 | 552 |                  ts: TimeSeries, | 
 | 553 |                  bins_vals: List[int], | 
 | 554 |                  colors: Any = ColorProfile, | 
 | 555 |                  style: Any = StyleProfile) -> None: | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 556 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 557 |     assert len(ts.data.shape) == 2 | 
 | 558 |     assert ts.data.shape[1] == len(bins_vals) | 
 | 559 |  | 
 | 560 |     total_hist = ts.data.sum(axis=0) | 
 | 561 |  | 
 | 562 |     # idx1, idx2 = hist_outliers_perc(total_hist, style.outliers_lat) | 
 | 563 |     idx1, idx2 = ts_hist_outliers_perc(ts.data, bounds_perc=style.outliers_lat) | 
 | 564 |  | 
 | 565 |     # don't cut too many bins | 
 | 566 |     min_bins_left = style.hm_hist_bins_count | 
 | 567 |     if idx2 - idx1 < min_bins_left: | 
 | 568 |         missed = min_bins_left - (idx2 - idx1) // 2 | 
 | 569 |         idx2 = min(len(total_hist), idx2 + missed) | 
 | 570 |         idx1 = max(0, idx1 - missed) | 
 | 571 |  | 
 | 572 |     data = ts.data[:, idx1:idx2] | 
 | 573 |     bins_vals = bins_vals[idx1:idx2] | 
 | 574 |  | 
 | 575 |     # don't using rebin_histogram here, as we need apply same bins for many arrays | 
 | 576 |     step = (bins_vals[-1] - bins_vals[0]) / style.hm_hist_bins_count | 
 | 577 |     new_bins_edges = numpy.arange(style.hm_hist_bins_count) * step + bins_vals[0] | 
 | 578 |     bin_mapping = numpy.clip(numpy.searchsorted(new_bins_edges, bins_vals) - 1, 0, len(new_bins_edges) - 1) | 
 | 579 |  | 
 | 580 |     # map origin bins ranges to heatmap bins, iterate over rows | 
 | 581 |     cmap = [] | 
 | 582 |     for line in data: | 
 | 583 |         curr_bins = [0] * style.hm_hist_bins_count | 
 | 584 |         for idx, count in zip(bin_mapping, line): | 
 | 585 |             curr_bins[idx] += count | 
 | 586 |         cmap.append(curr_bins) | 
 | 587 |     ncmap = numpy.array(cmap) | 
 | 588 |  | 
 | 589 |     xmin = 0 | 
 | 590 |     xmax = (ts.times[-1] - ts.times[0]) / 1000 + 1 | 
 | 591 |     ymin = new_bins_edges[0] | 
 | 592 |     ymax = new_bins_edges[-1] | 
 | 593 |  | 
 | 594 |     fig, ax = plt.subplots(figsize=style.figsize) | 
 | 595 |  | 
 | 596 |     if style.heatmap_interpolation == '1d': | 
 | 597 |         interpolation = 'none' | 
 | 598 |         res = [] | 
 | 599 |         for column in ncmap: | 
 | 600 |             new_x = numpy.linspace(0, len(column), style.heatmap_interpolation_points) | 
 | 601 |             old_x = numpy.arange(len(column)) + 0.5 | 
 | 602 |             new_vals = numpy.interp(new_x, old_x, column) | 
 | 603 |             res.append(new_vals) | 
 | 604 |         ncmap = numpy.array(res) | 
 | 605 |     else: | 
 | 606 |         interpolation = style.heatmap_interpolation | 
 | 607 |  | 
 | 608 |     ax.imshow(ncmap[:,::-1].T, | 
 | 609 |               interpolation=interpolation, | 
 | 610 |               extent=(xmin, xmax, ymin, ymax), | 
 | 611 |               cmap=colors.imshow_colormap) | 
 | 612 |  | 
 | 613 |     ax.set_aspect((xmax - xmin) / (ymax - ymin) * (6 / 9)) | 
 | 614 |     ax.set_ylabel("Latency, ms") | 
 | 615 |     ax.set_xlabel("Test time, s") | 
 | 616 |  | 
 | 617 |     plt.title(title) | 
 | 618 |  | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 619 |  | 
 | 620 | @provide_plot | 
 | 621 | def io_chart(title: str, | 
 | 622 |              legend: str, | 
 | 623 |              iosums: List[IOSummary], | 
 | 624 |              iops_log_spine: bool = False, | 
 | 625 |              lat_log_spine: bool = False, | 
 | 626 |              colors: Any = ColorProfile, | 
 | 627 |              style: Any = StyleProfile) -> None: | 
 | 628 |  | 
 | 629 |     # --------------  MAGIC VALUES  --------------------- | 
 | 630 |     # IOPS bar width | 
 | 631 |     width = 0.35 | 
 | 632 |  | 
 | 633 |     # offset from center of bar to deviation/confidence range indicator | 
 | 634 |     err_x_offset = 0.05 | 
 | 635 |  | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 636 |     # extra space on top and bottom, comparing to maximal tight layout | 
 | 637 |     extra_y_space = 0.05 | 
 | 638 |  | 
 | 639 |     # additional spine for BW/IOPS on left side of plot | 
 | 640 |     extra_io_spine_x_offset = -0.1 | 
 | 641 |  | 
 | 642 |     # extra space on left and right sides | 
 | 643 |     extra_x_space = 0.5 | 
 | 644 |  | 
 | 645 |     # legend location settings | 
 | 646 |     legend_location = "center left" | 
 | 647 |     legend_bbox_to_anchor = (1.1, 0.81) | 
 | 648 |  | 
 | 649 |     # plot box size adjust (only plot, not spines and legend) | 
 | 650 |     plot_box_adjust = {'right': 0.66} | 
 | 651 |     # --------------  END OF MAGIC VALUES  --------------------- | 
 | 652 |  | 
 | 653 |     block_size = iosums[0].block_size | 
 | 654 |     lc = len(iosums) | 
 | 655 |     xt = list(range(1, lc + 1)) | 
 | 656 |  | 
 | 657 |     # x coordinate of middle of the bars | 
 | 658 |     xpos = [i - width / 2 for i in xt] | 
 | 659 |  | 
 | 660 |     # import matplotlib.gridspec as gridspec | 
 | 661 |     # gs = gridspec.GridSpec(1, 3, width_ratios=[1, 4, 1]) | 
 | 662 |     # p1 = plt.subplot(gs[1]) | 
 | 663 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 664 |     fig, p1 = plt.subplots(figsize=StyleProfile.figsize) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 665 |  | 
 | 666 |     # plot IOPS/BW bars | 
 | 667 |     if block_size >= LARGE_BLOCKS: | 
 | 668 |         iops_primary = False | 
 | 669 |         coef = MiB2KiB | 
 | 670 |         p1.set_ylabel("BW (MiBps)") | 
 | 671 |     else: | 
 | 672 |         iops_primary = True | 
 | 673 |         coef = block_size | 
 | 674 |         p1.set_ylabel("IOPS") | 
 | 675 |  | 
 | 676 |     p1.bar(xpos, [iosum.bw.average / coef for iosum in iosums], width=width, color=colors.box_color, label=legend) | 
 | 677 |  | 
 | 678 |     # set correct x limits for primary IO spine | 
 | 679 |     min_io = min(iosum.bw.average - iosum.bw.deviation * style.dev_range_x for iosum in iosums) | 
 | 680 |     max_io = max(iosum.bw.average + iosum.bw.deviation * style.dev_range_x for iosum in iosums) | 
 | 681 |     border = (max_io - min_io) * extra_y_space | 
 | 682 |     io_lims = (min_io - border, max_io + border) | 
 | 683 |  | 
 | 684 |     p1.set_ylim(io_lims[0] / coef, io_lims[-1] / coef) | 
 | 685 |  | 
 | 686 |     # plot deviation and confidence error ranges | 
 | 687 |     err1_legend = err2_legend = None | 
 | 688 |     for pos, iosum in zip(xpos, iosums): | 
 | 689 |         err1_legend = p1.errorbar(pos + width / 2 - err_x_offset, | 
 | 690 |                                   iosum.bw.average / coef, | 
 | 691 |                                   iosum.bw.deviation * style.dev_range_x / coef, | 
 | 692 |                                   alpha=colors.subinfo_alpha, | 
 | 693 |                                   color=colors.suppl_color1)  # 'magenta' | 
 | 694 |         err2_legend = p1.errorbar(pos + width / 2 + err_x_offset, | 
 | 695 |                                   iosum.bw.average / coef, | 
 | 696 |                                   iosum.bw.confidence / coef, | 
 | 697 |                                   alpha=colors.subinfo_alpha, | 
 | 698 |                                   color=colors.suppl_color2)  # 'teal' | 
 | 699 |  | 
 | 700 |     if style.grid: | 
 | 701 |         p1.grid(True) | 
 | 702 |  | 
 | 703 |     handles1, labels1 = p1.get_legend_handles_labels() | 
 | 704 |  | 
 | 705 |     handles1 += [err1_legend, err2_legend] | 
 | 706 |     labels1 += ["{}% dev".format(style.dev_perc), | 
 | 707 |                 "{}% conf".format(int(100 * iosums[0].bw.confidence_level))] | 
 | 708 |  | 
 | 709 |     # extra y spine for latency on right side | 
 | 710 |     p2 = p1.twinx() | 
 | 711 |  | 
 | 712 |     # plot median and 95 perc latency | 
 | 713 |     p2.plot(xt, [iosum.lat.perc_50 for iosum in iosums], label="lat med") | 
 | 714 |     p2.plot(xt, [iosum.lat.perc_95 for iosum in iosums], label="lat 95%") | 
 | 715 |  | 
 | 716 |     # limit and label x spine | 
 | 717 |     plt.xlim(extra_x_space, lc + extra_x_space) | 
 | 718 |     plt.xticks(xt, ["{0} * {1}".format(iosum.qd, iosum.nodes_count) for iosum in iosums]) | 
 | 719 |     p1.set_xlabel("QD * Test node count") | 
 | 720 |  | 
 | 721 |     # apply log scales for X spines, if set | 
 | 722 |     if iops_log_spine: | 
 | 723 |         p1.set_yscale('log') | 
 | 724 |  | 
 | 725 |     if lat_log_spine: | 
 | 726 |         p2.set_yscale('log') | 
 | 727 |  | 
 | 728 |     # extra y spine for BW/IOPS on left side | 
 | 729 |     if style.extra_io_spine: | 
 | 730 |         p3 = p1.twinx() | 
 | 731 |         if iops_log_spine: | 
 | 732 |             p3.set_yscale('log') | 
 | 733 |  | 
 | 734 |         if iops_primary: | 
 | 735 |             p3.set_ylabel("BW (MiBps)") | 
 | 736 |             p3.set_ylim(io_lims[0] / MiB2KiB, io_lims[1] / MiB2KiB) | 
 | 737 |         else: | 
 | 738 |             p3.set_ylabel("IOPS") | 
 | 739 |             p3.set_ylim(io_lims[0] / block_size, io_lims[1] / block_size) | 
 | 740 |  | 
 | 741 |         p3.spines["left"].set_position(("axes", extra_io_spine_x_offset)) | 
 | 742 |         p3.spines["left"].set_visible(True) | 
 | 743 |         p3.yaxis.set_label_position('left') | 
 | 744 |         p3.yaxis.set_ticks_position('left') | 
 | 745 |  | 
 | 746 |     p2.set_ylabel("Latency (ms)") | 
 | 747 |  | 
 | 748 |     plt.title(title) | 
 | 749 |  | 
 | 750 |     # legend box | 
 | 751 |     handles2, labels2 = p2.get_legend_handles_labels() | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 752 |     plt.legend(handles1 + handles2, labels1 + labels2, | 
 | 753 |                loc=legend_location, | 
 | 754 |                bbox_to_anchor=legend_bbox_to_anchor) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 755 |  | 
 | 756 |     # adjust central box size to fit legend | 
 | 757 |     plt.subplots_adjust(**plot_box_adjust) | 
 | 758 |     apply_style(style, eng=False, no_legend=True) | 
 | 759 |  | 
 | 760 |  | 
 | 761 | #  --------------------  REPORT HELPERS -------------------------------------------------------------------------------- | 
 | 762 |  | 
 | 763 |  | 
| koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 764 | class HTMLBlock: | 
 | 765 |     data = None  # type: str | 
 | 766 |     js_links = []  # type: List[str] | 
 | 767 |     css_links = []  # type: List[str] | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 768 |     order_attr = None  # type: Any | 
 | 769 |  | 
 | 770 |     def __init__(self, data: str, order_attr: Any = None) -> None: | 
 | 771 |         self.data = data | 
 | 772 |         self.order_attr = order_attr | 
 | 773 |  | 
 | 774 |     def __eq__(self, o: object) -> bool: | 
 | 775 |         return o.order_attr == self.order_attr  # type: ignore | 
 | 776 |  | 
 | 777 |     def __lt__(self, o: object) -> bool: | 
 | 778 |         return o.order_attr > self.order_attr  # type: ignore | 
 | 779 |  | 
 | 780 |  | 
 | 781 | class Table: | 
 | 782 |     def __init__(self, header: List[str]) -> None: | 
 | 783 |         self.header = header | 
 | 784 |         self.data = [] | 
 | 785 |  | 
 | 786 |     def add_line(self, values: List[str]) -> None: | 
 | 787 |         self.data.append(values) | 
 | 788 |  | 
 | 789 |     def html(self): | 
 | 790 |         return html.table("", self.header, self.data) | 
| koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 791 |  | 
 | 792 |  | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 793 | class Menu1st: | 
 | 794 |     engineering = "Engineering" | 
 | 795 |     summary = "Summary" | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 796 |     per_job = "Per Job" | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 797 |  | 
 | 798 |  | 
 | 799 | class Menu2ndEng: | 
 | 800 |     iops_time = "IOPS(time)" | 
 | 801 |     hist = "IOPS/lat overall histogram" | 
 | 802 |     lat_time = "Lat(time)" | 
 | 803 |  | 
 | 804 |  | 
 | 805 | class Menu2ndSumm: | 
 | 806 |     io_lat_qd = "IO & Lat vs QD" | 
 | 807 |  | 
 | 808 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 809 | menu_1st_order = [Menu1st.summary, Menu1st.engineering, Menu1st.per_job] | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 810 |  | 
 | 811 |  | 
 | 812 | #  --------------------  REPORTS  -------------------------------------------------------------------------------------- | 
 | 813 |  | 
 | 814 |  | 
| koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 815 | class Reporter(metaclass=abc.ABCMeta): | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 816 |     suite_types = set() # type: Set[str] | 
 | 817 |  | 
| koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 818 |     @abc.abstractmethod | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 819 |     def get_divs(self, suite: SuiteConfig, storage: ResultStorage) -> Iterator[Tuple[str, str, HTMLBlock]]: | 
 | 820 |         pass | 
 | 821 |  | 
 | 822 |  | 
 | 823 | class JobReporter(metaclass=abc.ABCMeta): | 
 | 824 |     suite_type = set()  # type: Set[str] | 
 | 825 |  | 
 | 826 |     @abc.abstractmethod | 
 | 827 |     def get_divs(self, | 
 | 828 |                  suite: SuiteConfig, | 
 | 829 |                  job: JobConfig, | 
 | 830 |                  storage: ResultStorage) -> Iterator[Tuple[str, str, HTMLBlock]]: | 
| koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 831 |         pass | 
 | 832 |  | 
 | 833 |  | 
 | 834 | # Main performance report | 
 | 835 | class PerformanceSummary(Reporter): | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 836 |     """Aggregated summary fro storage""" | 
| koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 837 |  | 
 | 838 |  | 
 | 839 | # Main performance report | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 840 | class IO_QD(Reporter): | 
| koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 841 |     """Creates graph, which show how IOPS and Latency depend on QD""" | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 842 |     suite_types = {'fio'} | 
 | 843 |  | 
 | 844 |     def get_divs(self, suite: SuiteConfig, rstorage: ResultStorage) -> Iterator[Tuple[str, str, HTMLBlock]]: | 
 | 845 |         ts_map = defaultdict(list)  # type: Dict[FioJobParams, List[Tuple[SuiteConfig, FioJobConfig]]] | 
 | 846 |         str_summary = {}  # type: Dict[FioJobParams, List[IOSummary]] | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 847 |         for job in rstorage.iter_job(suite): | 
 | 848 |             fjob = cast(FioJobConfig, job) | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 849 |             fjob_no_qd = cast(FioJobParams, fjob.params.copy(qd=None)) | 
 | 850 |             str_summary[fjob_no_qd] = (fjob_no_qd.summary, fjob_no_qd.long_summary) | 
 | 851 |             ts_map[fjob_no_qd].append((suite, fjob)) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 852 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 853 |         for tpl, suites_jobs in ts_map.items(): | 
 | 854 |             if len(suites_jobs) > StyleProfile.min_iops_vs_qd_jobs: | 
 | 855 |                 iosums = [make_iosum(rstorage, suite, job) for suite, job in suites_jobs] | 
 | 856 |                 iosums.sort(key=lambda x: x.qd) | 
 | 857 |                 summary, summary_long = str_summary[tpl] | 
 | 858 |                 ds = DataSource(suite_id=suite.storage_id, | 
 | 859 |                                 job_id=summary, | 
 | 860 |                                 node_id=AGG_TAG, | 
 | 861 |                                 sensor="fio", | 
 | 862 |                                 dev=AGG_TAG, | 
 | 863 |                                 metric="io_over_qd", | 
 | 864 |                                 tag="svg") | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 865 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 866 |                 title = "IOPS, BW, Lat vs. QD.\n" + summary_long | 
 | 867 |                 fpath = io_chart(rstorage, ds, title=title, legend="IOPS/BW", iosums=iosums)  # type: str | 
 | 868 |                 yield Menu1st.summary, Menu2ndSumm.io_lat_qd, HTMLBlock(html.img(fpath)) | 
| koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 869 |  | 
 | 870 |  | 
 | 871 | # Linearization report | 
 | 872 | class IOPS_Bsize(Reporter): | 
 | 873 |     """Creates graphs, which show how IOPS and Latency depend on block size""" | 
 | 874 |  | 
 | 875 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 876 | def summ_sensors(rstorage: ResultStorage, | 
 | 877 |                  nodes: List[str], | 
 | 878 |                  sensor: str, | 
 | 879 |                  metric: str, | 
 | 880 |                  time_range: Tuple[int, int]) -> Optional[numpy.array]: | 
 | 881 |  | 
 | 882 |     res = None  # type: Optional[numpy.array] | 
 | 883 |     for node_id in nodes: | 
 | 884 |         for _, groups in rstorage.iter_sensors(node_id=node_id, sensor=sensor, metric=metric): | 
 | 885 |             data = get_sensor_for_time_range(rstorage, | 
 | 886 |                                              node_id=node_id, | 
 | 887 |                                              sensor=sensor, | 
 | 888 |                                              dev=groups['dev'], | 
 | 889 |                                              metric=metric, | 
 | 890 |                                              time_range=time_range) | 
 | 891 |             if res is None: | 
 | 892 |                 res = data | 
 | 893 |             else: | 
 | 894 |                 res += data | 
 | 895 |     return res | 
 | 896 |  | 
 | 897 |  | 
| koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 898 | # IOPS/latency distribution | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 899 | class StatInfo(JobReporter): | 
 | 900 |     """Statistic info for job results""" | 
 | 901 |     suite_types = {'fio'} | 
 | 902 |  | 
 | 903 |     def get_divs(self, suite: SuiteConfig, job: JobConfig, | 
 | 904 |                  rstorage: ResultStorage) -> Iterator[Tuple[str, str, HTMLBlock]]: | 
 | 905 |  | 
 | 906 |         fjob = cast(FioJobConfig, job) | 
 | 907 |         io_sum = make_iosum(rstorage, suite, fjob) | 
 | 908 |  | 
 | 909 |         summary_data = [ | 
 | 910 |             ["Summary", job.params.long_summary], | 
 | 911 |         ] | 
 | 912 |  | 
 | 913 |         res = html.H2(html.center("Test summary")) | 
 | 914 |         res += html.table("Test info", None, summary_data) | 
 | 915 |         stat_data_headers = ["Name", "Average ~ Dev", "Conf interval", "Mediana", "Mode", "Kurt / Skew", "95%", "99%"] | 
 | 916 |  | 
 | 917 |         KB = 1024 | 
 | 918 |         bw_data = ["Bandwidth", | 
 | 919 |                    "{}Bps ~ {}Bps".format(b2ssize(io_sum.bw.average * KB), b2ssize(io_sum.bw.deviation * KB)), | 
 | 920 |                    b2ssize(io_sum.bw.confidence * KB) + "Bps", | 
 | 921 |                    b2ssize(io_sum.bw.perc_50 * KB) + "Bps", | 
 | 922 |                    "-", | 
 | 923 |                    "{:.2f} / {:.2f}".format(io_sum.bw.kurt, io_sum.bw.skew), | 
 | 924 |                    b2ssize(io_sum.bw.perc_5 * KB) + "Bps", | 
 | 925 |                    b2ssize(io_sum.bw.perc_1 * KB) + "Bps"] | 
 | 926 |  | 
 | 927 |         iops_data = ["IOPS", | 
 | 928 |                      "{}IOPS ~ {}IOPS".format(b2ssize_10(io_sum.bw.average / fjob.bsize), | 
 | 929 |                                               b2ssize_10(io_sum.bw.deviation / fjob.bsize)), | 
 | 930 |                      b2ssize_10(io_sum.bw.confidence / fjob.bsize) + "IOPS", | 
 | 931 |                      b2ssize_10(io_sum.bw.perc_50 / fjob.bsize) + "IOPS", | 
 | 932 |                      "-", | 
 | 933 |                      "{:.2f} / {:.2f}".format(io_sum.bw.kurt, io_sum.bw.skew), | 
 | 934 |                      b2ssize_10(io_sum.bw.perc_5 / fjob.bsize) + "IOPS", | 
 | 935 |                      b2ssize_10(io_sum.bw.perc_1 / fjob.bsize) + "IOPS"] | 
 | 936 |  | 
 | 937 |         MICRO = 1000000 | 
 | 938 |         # latency | 
 | 939 |         lat_data = ["Latency", | 
 | 940 |                     "-", | 
 | 941 |                     "-", | 
 | 942 |                     b2ssize_10(io_sum.bw.perc_50 / MICRO) + "s", | 
 | 943 |                     "-", | 
 | 944 |                     "-", | 
 | 945 |                     b2ssize_10(io_sum.bw.perc_95 / MICRO) + "s", | 
 | 946 |                     b2ssize_10(io_sum.bw.perc_99 / MICRO) + "s"] | 
 | 947 |  | 
 | 948 |         # sensor usage | 
 | 949 |         stat_data = [iops_data, bw_data, lat_data] | 
 | 950 |         res += html.table("Load stats info", stat_data_headers, stat_data) | 
 | 951 |  | 
 | 952 |         resource_headers = ["Resource", "Usage count", "Proportional to work done"] | 
 | 953 |  | 
 | 954 |         io_transfered = io_sum.bw.data.sum() * KB | 
 | 955 |         resource_data = [ | 
 | 956 |             ["IO made", b2ssize_10(io_transfered / KB / fjob.bsize) + "OP", "-"], | 
 | 957 |             ["Data transfered", b2ssize(io_transfered) + "B", "-"] | 
 | 958 |         ] | 
 | 959 |  | 
 | 960 |  | 
 | 961 |         storage = rstorage.storage | 
 | 962 |         nodes = storage.load_list(NodeInfo, 'all_nodes')  # type: List[NodeInfo] | 
 | 963 |  | 
 | 964 |         storage_nodes = [node.node_id for node in nodes if node.roles.intersection(STORAGE_ROLES)] | 
 | 965 |         test_nodes = [node.node_id for node in nodes if "testnode" in node.roles] | 
 | 966 |  | 
| kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame^] | 967 |         trange = (job.reliable_info_range[0] / 1000, job.reliable_info_range[1] / 1000) | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 968 |         ops_done = io_transfered / fjob.bsize / KB | 
 | 969 |  | 
 | 970 |         all_metrics = [ | 
 | 971 |             ("Test nodes net send", 'net-io', 'send_bytes', b2ssize, test_nodes, "B", io_transfered), | 
 | 972 |             ("Test nodes net recv", 'net-io', 'recv_bytes', b2ssize, test_nodes, "B", io_transfered), | 
 | 973 |  | 
 | 974 |             ("Test nodes disk write", 'block-io', 'sectors_written', b2ssize, test_nodes, "B", io_transfered), | 
 | 975 |             ("Test nodes disk read", 'block-io', 'sectors_read', b2ssize, test_nodes, "B", io_transfered), | 
 | 976 |             ("Test nodes writes", 'block-io', 'writes_completed', b2ssize_10, test_nodes, "OP", ops_done), | 
 | 977 |             ("Test nodes reads", 'block-io', 'reads_completed', b2ssize_10, test_nodes, "OP", ops_done), | 
 | 978 |  | 
 | 979 |             ("Storage nodes net send", 'net-io', 'send_bytes', b2ssize, storage_nodes, "B", io_transfered), | 
 | 980 |             ("Storage nodes net recv", 'net-io', 'recv_bytes', b2ssize, storage_nodes, "B", io_transfered), | 
 | 981 |  | 
 | 982 |             ("Storage nodes disk write", 'block-io', 'sectors_written', b2ssize, storage_nodes, "B", io_transfered), | 
 | 983 |             ("Storage nodes disk read", 'block-io', 'sectors_read', b2ssize, storage_nodes, "B", io_transfered), | 
 | 984 |             ("Storage nodes writes", 'block-io', 'writes_completed', b2ssize_10, storage_nodes, "OP", ops_done), | 
 | 985 |             ("Storage nodes reads", 'block-io', 'reads_completed', b2ssize_10, storage_nodes, "OP", ops_done), | 
 | 986 |         ] | 
 | 987 |  | 
 | 988 |         all_agg = {} | 
 | 989 |  | 
 | 990 |         for descr, sensor, metric, ffunc, nodes, units, denom in all_metrics: | 
 | 991 |             if not nodes: | 
 | 992 |                 continue | 
 | 993 |  | 
 | 994 |             res_arr = summ_sensors(rstorage, nodes=nodes, sensor=sensor, metric=metric, time_range=trange) | 
 | 995 |             if res_arr is None: | 
 | 996 |                 continue | 
 | 997 |  | 
 | 998 |             agg = res_arr.sum() | 
 | 999 |             resource_data.append([descr, ffunc(agg) + units, "{:.1f}".format(agg / denom)]) | 
 | 1000 |             all_agg[descr] = agg | 
 | 1001 |  | 
 | 1002 |  | 
 | 1003 |         cums = [ | 
 | 1004 |             ("Test nodes writes", "Test nodes reads", "Total test ops", b2ssize_10, "OP", ops_done), | 
 | 1005 |             ("Storage nodes writes", "Storage nodes reads", "Total storage ops", b2ssize_10, "OP", ops_done), | 
 | 1006 |             ("Storage nodes disk write", "Storage nodes disk read", "Total storage IO size", b2ssize, | 
 | 1007 |              "B", io_transfered), | 
 | 1008 |             ("Test nodes disk write", "Test nodes disk read", "Total test nodes IO size", b2ssize, "B", io_transfered), | 
 | 1009 |         ] | 
 | 1010 |  | 
 | 1011 |         for name1, name2, descr, ffunc, units, denom in cums: | 
 | 1012 |             if name1 in all_agg and name2 in all_agg: | 
 | 1013 |                 agg = all_agg[name1] + all_agg[name2] | 
 | 1014 |                 resource_data.append([descr, ffunc(agg) + units, "{:.1f}".format(agg / denom)]) | 
 | 1015 |  | 
 | 1016 |         res += html.table("Resources usage", resource_headers, resource_data) | 
 | 1017 |  | 
 | 1018 |         yield Menu1st.per_job, job.summary, HTMLBlock(res) | 
 | 1019 |  | 
 | 1020 |  | 
 | 1021 | # IOPS/latency distribution | 
 | 1022 | class IOHist(JobReporter): | 
| koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 1023 |     """IOPS.latency distribution histogram""" | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1024 |     suite_types = {'fio'} | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1025 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1026 |     def get_divs(self, | 
 | 1027 |                  suite: SuiteConfig, | 
 | 1028 |                  job: JobConfig, | 
 | 1029 |                  rstorage: ResultStorage) -> Iterator[Tuple[str, str, HTMLBlock]]: | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1030 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1031 |         fjob = cast(FioJobConfig, job) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1032 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1033 |         yield Menu1st.per_job, fjob.summary, HTMLBlock(html.H2(html.center("Load histograms"))) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1034 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1035 |         agg_lat = get_aggregated(rstorage, suite, fjob, "lat") | 
 | 1036 |         bins_edges = numpy.array(get_lat_vals(agg_lat.data.shape[1]), dtype='float32') / 1000  # convert us to ms | 
| kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame^] | 1037 |         lat_stat_prop = calc_histo_stat_props(agg_lat, bins_edges, rebins_count=StyleProfile.hist_lat_boxes) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1038 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1039 |         # import IPython | 
 | 1040 |         # IPython.embed() | 
 | 1041 |  | 
 | 1042 |         long_summary = cast(FioJobParams, fjob.params).long_summary | 
 | 1043 |  | 
 | 1044 |         title = "Latency distribution" | 
 | 1045 |         units = "ms" | 
 | 1046 |  | 
 | 1047 |         fpath = plot_hist(rstorage, agg_lat.source(tag='hist.svg'), title, units, lat_stat_prop)  # type: str | 
 | 1048 |         yield Menu1st.per_job, fjob.summary, HTMLBlock(html.img(fpath)) | 
 | 1049 |  | 
 | 1050 |         agg_io = get_aggregated(rstorage, suite, fjob, "bw") | 
 | 1051 |  | 
 | 1052 |         if fjob.bsize >= LARGE_BLOCKS: | 
 | 1053 |             title = "BW distribution" | 
 | 1054 |             units = "MiBps" | 
 | 1055 |             agg_io.data //= MiB2KiB | 
 | 1056 |         else: | 
 | 1057 |             title = "IOPS distribution" | 
 | 1058 |             agg_io.data //= fjob.bsize | 
 | 1059 |             units = "IOPS" | 
 | 1060 |  | 
 | 1061 |         io_stat_prop = calc_norm_stat_props(agg_io, bins_count=StyleProfile.hist_boxes) | 
 | 1062 |         fpath = plot_hist(rstorage, agg_io.source(tag='hist.svg'), title, units, io_stat_prop)  # type: str | 
 | 1063 |         yield Menu1st.per_job, fjob.summary, HTMLBlock(html.img(fpath)) | 
| koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 1064 |  | 
 | 1065 |  | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1066 | # IOPS/latency over test time for each job | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1067 | class IOTime(JobReporter): | 
| koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 1068 |     """IOPS/latency during test""" | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1069 |     suite_types = {'fio'} | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1070 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1071 |     def get_divs(self, | 
 | 1072 |                  suite: SuiteConfig, | 
 | 1073 |                  job: JobConfig, | 
 | 1074 |                  rstorage: ResultStorage) -> Iterator[Tuple[str, str, HTMLBlock]]: | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1075 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1076 |         fjob = cast(FioJobConfig, job) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1077 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1078 |         yield Menu1st.per_job, fjob.summary, HTMLBlock(html.H2(html.center("Load over time"))) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1079 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1080 |         agg_io = get_aggregated(rstorage, suite, fjob, "bw") | 
 | 1081 |         if fjob.bsize >= LARGE_BLOCKS: | 
 | 1082 |             title = "Bandwidth" | 
 | 1083 |             units = "MiBps" | 
 | 1084 |             agg_io.data //= MiB2KiB | 
 | 1085 |         else: | 
 | 1086 |             title = "IOPS" | 
 | 1087 |             agg_io.data //= fjob.bsize | 
 | 1088 |             units = "IOPS" | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1089 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1090 |         fpath = plot_v_over_time(rstorage, agg_io.source(tag='ts.svg'), title, units, agg_io)  # type: str | 
 | 1091 |         yield Menu1st.per_job, fjob.summary, HTMLBlock(html.img(fpath)) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1092 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1093 |         agg_lat = get_aggregated(rstorage, suite, fjob, "lat") | 
 | 1094 |         bins_edges = numpy.array(get_lat_vals(agg_lat.data.shape[1]), dtype='float32') / 1000 | 
 | 1095 |         title = "Latency" | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1096 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1097 |         fpath = plot_lat_over_time(rstorage, agg_lat.source(tag='ts.svg'), title, agg_lat, bins_edges)  # type: str | 
 | 1098 |         yield Menu1st.per_job, fjob.summary, HTMLBlock(html.img(fpath)) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1099 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1100 |         title = "Latency heatmap" | 
 | 1101 |         fpath = plot_heatmap(rstorage, agg_lat.source(tag='hmap.png'), title, agg_lat, bins_edges)  # type: str | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1102 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1103 |         yield Menu1st.per_job, fjob.summary, HTMLBlock(html.img(fpath)) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1104 |  | 
 | 1105 |  | 
 | 1106 | class ResourceUsage: | 
 | 1107 |     def __init__(self, io_r_ops: int, io_w_ops: int, io_r_kb: int, io_w_kb: int) -> None: | 
 | 1108 |         self.io_w_ops = io_w_ops | 
 | 1109 |         self.io_r_ops = io_r_ops | 
 | 1110 |         self.io_w_kb = io_w_kb | 
 | 1111 |         self.io_r_kb = io_r_kb | 
 | 1112 |  | 
 | 1113 |         self.cpu_used_user = None  # type: int | 
 | 1114 |         self.cpu_used_sys = None  # type: int | 
 | 1115 |         self.cpu_wait_io = None  # type: int | 
 | 1116 |  | 
 | 1117 |         self.net_send_packets = None  # type: int | 
 | 1118 |         self.net_recv_packets = None  # type: int | 
 | 1119 |         self.net_send_kb = None  # type: int | 
 | 1120 |         self.net_recv_kb = None  # type: int | 
| koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 1121 |  | 
 | 1122 |  | 
 | 1123 | # Cluster load over test time | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1124 | class ClusterLoad(JobReporter): | 
| koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 1125 |     """IOPS/latency during test""" | 
 | 1126 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1127 |     # TODO: units should came from sensor | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1128 |     storage_sensors = [ | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1129 |         ('block-io', 'reads_completed', "Read ops", 'iops'), | 
 | 1130 |         ('block-io', 'writes_completed', "Write ops", 'iops'), | 
 | 1131 |         ('block-io', 'sectors_read', "Read kb", 'kb'), | 
 | 1132 |         ('block-io', 'sectors_written', "Write kb", 'kb'), | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1133 |     ] | 
 | 1134 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1135 |     def get_divs(self, | 
 | 1136 |                  suite: SuiteConfig, | 
 | 1137 |                  job: JobConfig, | 
 | 1138 |                  rstorage: ResultStorage) -> Iterator[Tuple[str, str, HTMLBlock]]: | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1139 |         # split nodes on test and other | 
 | 1140 |         storage = rstorage.storage | 
 | 1141 |         nodes = storage.load_list(NodeInfo, "all_nodes")  # type: List[NodeInfo] | 
 | 1142 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1143 |         yield Menu1st.per_job, job.summary, HTMLBlock(html.H2(html.center("Cluster load"))) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1144 |         test_nodes = {node.node_id for node in nodes if 'testnode' in node.roles} | 
 | 1145 |         cluster_nodes = {node.node_id for node in nodes if 'testnode' not in node.roles} | 
 | 1146 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1147 |         # convert ms to s | 
 | 1148 |         time_range = (job.reliable_info_range[0] // MS2S, job.reliable_info_range[1] // MS2S) | 
 | 1149 |         len = time_range[1] - time_range[0] | 
 | 1150 |         for sensor, metric, sensor_title, units in self.storage_sensors: | 
 | 1151 |             sum_testnode = numpy.zeros((len,)) | 
 | 1152 |             sum_other = numpy.zeros((len,)) | 
 | 1153 |             for path, groups in rstorage.iter_sensors(sensor=sensor, metric=metric): | 
 | 1154 |                 # todo: should return sensor units | 
 | 1155 |                 data = get_sensor_for_time_range(rstorage, | 
 | 1156 |                                                  groups['node_id'], | 
 | 1157 |                                                  sensor, | 
 | 1158 |                                                  groups['dev'], | 
 | 1159 |                                                  metric, time_range) | 
 | 1160 |                 if groups['node_id'] in test_nodes: | 
 | 1161 |                     sum_testnode += data | 
 | 1162 |                 else: | 
 | 1163 |                     sum_other += data | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1164 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1165 |             ds = DataSource(suite_id=suite.storage_id, | 
 | 1166 |                             job_id=job.storage_id, | 
 | 1167 |                             node_id="test_nodes", | 
 | 1168 |                             sensor=sensor, | 
 | 1169 |                             dev=AGG_TAG, | 
 | 1170 |                             metric=metric, | 
 | 1171 |                             tag="ts.svg") | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1172 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1173 |             # s to ms | 
 | 1174 |             ts = TimeSeries(name="", | 
 | 1175 |                             times=numpy.arange(*time_range) * MS2S, | 
 | 1176 |                             data=sum_testnode, | 
 | 1177 |                             raw=None, | 
 | 1178 |                             units=units, | 
 | 1179 |                             time_units="us", | 
 | 1180 |                             source=ds) | 
| kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame^] | 1181 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1182 |             fpath = plot_v_over_time(rstorage, ds, sensor_title, sensor_title, ts=ts)  # type: str | 
 | 1183 |             yield Menu1st.per_job, job.summary, HTMLBlock(html.img(fpath)) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1184 |  | 
 | 1185 |  | 
 | 1186 | # Ceph cluster summary | 
 | 1187 | class ResourceConsumption(Reporter): | 
 | 1188 |     """Resources consumption report, only text""" | 
 | 1189 |  | 
| koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 1190 |  | 
 | 1191 | # Node load over test time | 
 | 1192 | class NodeLoad(Reporter): | 
 | 1193 |     """IOPS/latency during test""" | 
 | 1194 |  | 
 | 1195 |  | 
 | 1196 | # Ceph cluster summary | 
 | 1197 | class CephClusterSummary(Reporter): | 
 | 1198 |     """IOPS/latency during test""" | 
 | 1199 |  | 
 | 1200 |  | 
| koder aka kdanilov | 7f59d56 | 2016-12-26 01:34:23 +0200 | [diff] [blame] | 1201 | # TODO: Ceph operation breakout report | 
 | 1202 | # TODO: Resource consumption for different type of test | 
 | 1203 |  | 
 | 1204 |  | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1205 | # ------------------------------------------  REPORT STAGES  ----------------------------------------------------------- | 
 | 1206 |  | 
 | 1207 |  | 
 | 1208 | class HtmlReportStage(Stage): | 
 | 1209 |     priority = StepOrder.REPORT | 
 | 1210 |  | 
 | 1211 |     def run(self, ctx: TestRun) -> None: | 
 | 1212 |         rstorage = ResultStorage(ctx.storage) | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1213 |  | 
 | 1214 |         job_reporters = [StatInfo(), IOTime(), IOHist(), ClusterLoad()] # type: List[JobReporter] | 
 | 1215 |         reporters = [IO_QD()]  # type: List[Reporter] | 
 | 1216 |  | 
 | 1217 |         # job_reporters = [ClusterLoad()] | 
 | 1218 |         # reporters = [] | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1219 |  | 
 | 1220 |         root_dir = os.path.dirname(os.path.dirname(wally.__file__)) | 
 | 1221 |         doc_templ_path = os.path.join(root_dir, "report_templates/index.html") | 
 | 1222 |         report_template = open(doc_templ_path, "rt").read() | 
 | 1223 |         css_file_src = os.path.join(root_dir, "report_templates/main.css") | 
 | 1224 |         css_file = open(css_file_src, "rt").read() | 
 | 1225 |  | 
 | 1226 |         menu_block = [] | 
 | 1227 |         content_block = [] | 
 | 1228 |         link_idx = 0 | 
 | 1229 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1230 |         # matplotlib.rcParams.update(ctx.config.reporting.matplotlib_params.raw()) | 
 | 1231 |         # ColorProfile.__dict__.update(ctx.config.reporting.colors.raw()) | 
 | 1232 |         # StyleProfile.__dict__.update(ctx.config.reporting.style.raw()) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1233 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1234 |         items = defaultdict(lambda: defaultdict(list))  # type: Dict[str, Dict[str, List[HTMLBlock]]] | 
 | 1235 |  | 
 | 1236 |         # TODO: filter reporters | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1237 |         for suite in rstorage.iter_suite(FioTest.name): | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1238 |             all_jobs = list(rstorage.iter_job(suite)) | 
 | 1239 |             all_jobs.sort(key=lambda job: job.params) | 
 | 1240 |             for job in all_jobs: | 
 | 1241 |                 for reporter in job_reporters: | 
 | 1242 |                     for block, item, html in reporter.get_divs(suite, job, rstorage): | 
 | 1243 |                         items[block][item].append(html) | 
 | 1244 |                 if DEBUG: | 
 | 1245 |                     break | 
 | 1246 |  | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1247 |             for reporter in reporters: | 
 | 1248 |                 for block, item, html in reporter.get_divs(suite, rstorage): | 
 | 1249 |                     items[block][item].append(html) | 
 | 1250 |  | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1251 |             if DEBUG: | 
 | 1252 |                 break | 
 | 1253 |  | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1254 |         for idx_1st, menu_1st in enumerate(sorted(items, key=lambda x: menu_1st_order.index(x))): | 
 | 1255 |             menu_block.append( | 
 | 1256 |                 '<a href="#item{}" class="nav-group" data-toggle="collapse" data-parent="#MainMenu">{}</a>' | 
 | 1257 |                 .format(idx_1st, menu_1st) | 
 | 1258 |             ) | 
 | 1259 |             menu_block.append('<div class="collapse" id="item{}">'.format(idx_1st)) | 
 | 1260 |             for menu_2nd in sorted(items[menu_1st]): | 
 | 1261 |                 menu_block.append('    <a href="#content{}" class="nav-group-item">{}</a>' | 
 | 1262 |                                   .format(link_idx, menu_2nd)) | 
 | 1263 |                 content_block.append('<div id="content{}">'.format(link_idx)) | 
| koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 1264 |                 content_block.extend("    " + x.data for x in items[menu_1st][menu_2nd]) | 
| koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1265 |                 content_block.append('</div>') | 
 | 1266 |                 link_idx += 1 | 
 | 1267 |             menu_block.append('</div>') | 
 | 1268 |  | 
 | 1269 |         report = report_template.replace("{{{menu}}}", ("\n" + " " * 16).join(menu_block)) | 
 | 1270 |         report = report.replace("{{{content}}}", ("\n" + " " * 16).join(content_block)) | 
 | 1271 |         report_path = rstorage.put_report(report, "index.html") | 
 | 1272 |         rstorage.put_report(css_file, "main.css") | 
 | 1273 |         logger.info("Report is stored into %r", report_path) | 
 | 1274 |  | 
 | 1275 |  | 
 | 1276 | class ConsoleReportStage(Stage): | 
 | 1277 |  | 
 | 1278 |     priority = StepOrder.REPORT | 
 | 1279 |  | 
 | 1280 |     def run(self, ctx: TestRun) -> None: | 
 | 1281 |         # TODO(koder): load data from storage | 
 | 1282 |         raise NotImplementedError("...") |