koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 1 | import os |
kdanylov aka koder | 150b219 | 2017-04-01 16:53:01 +0300 | [diff] [blame] | 2 | import pprint |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 3 | import logging |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 4 | from typing import cast, Iterator, Tuple, Type, Dict, Optional, List |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 5 | |
| 6 | import numpy |
| 7 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 8 | from .suits.job import JobConfig |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 9 | from .result_classes import SuiteConfig, TimeSeries, DataSource, StatProps, IResultStorage, ArrayData |
kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame] | 10 | from .storage import Storage |
| 11 | from .utils import StopTestError |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 12 | from .suits.all_suits import all_suits |
| 13 | |
| 14 | |
| 15 | logger = logging.getLogger('wally') |
| 16 | |
| 17 | |
| 18 | class DB_re: |
| 19 | node_id = r'\d+.\d+.\d+.\d+:\d+' |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 20 | job_id = r'[-a-zA-Z0-9_]+_\d+' |
| 21 | suite_id = r'[a-z_]+_\d+' |
| 22 | sensor = r'[-a-z_]+' |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 23 | dev = r'[-a-zA-Z0-9_]+' |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 24 | tag = r'[a-z_.]+' |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 25 | metric = r'[a-z_.]+' |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 26 | |
| 27 | |
| 28 | class DB_paths: |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 29 | suite_cfg_r = r'results/{suite_id}\.info\.yml' |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 30 | |
kdanylov aka koder | 150b219 | 2017-04-01 16:53:01 +0300 | [diff] [blame] | 31 | job_root = r'results/{suite_id}\.{job_id}/' |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 32 | job_cfg_r = job_root + r'info\.yml' |
| 33 | |
| 34 | # time series, data from load tool, sensor is a tool name |
kdanylov aka koder | 150b219 | 2017-04-01 16:53:01 +0300 | [diff] [blame] | 35 | ts_r = job_root + r'{node_id}\.{sensor}\.{metric}\.{tag}' |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 36 | |
| 37 | # statistica data for ts |
kdanylov aka koder | 150b219 | 2017-04-01 16:53:01 +0300 | [diff] [blame] | 38 | stat_r = job_root + r'{node_id}\.{sensor}\.{metric}\.stat\.yaml' |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 39 | |
| 40 | # sensor data |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 41 | sensor_data_r = r'sensors/{node_id}_{sensor}\.{dev}\.{metric}\.{tag}' |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 42 | sensor_time_r = r'sensors/{node_id}_collected_at\.csv' |
| 43 | |
| 44 | report_root = 'report/' |
kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame] | 45 | plot_r = r'{suite_id}\.{job_id}/{node_id}\.{sensor}\.{dev}\.{metric}\.{tag}' |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 46 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 47 | job_cfg = job_cfg_r.replace("\\.", '.') |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 48 | suite_cfg = suite_cfg_r.replace("\\.", '.') |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 49 | ts = ts_r.replace("\\.", '.') |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 50 | stat = stat_r.replace("\\.", '.') |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 51 | sensor_data = sensor_data_r.replace("\\.", '.') |
| 52 | sensor_time = sensor_time_r.replace("\\.", '.') |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 53 | plot = plot_r.replace("\\.", '.') |
| 54 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 55 | |
| 56 | DB_rr = {name: r"(?P<{}>{})".format(name, rr) |
| 57 | for name, rr in DB_re.__dict__.items() |
| 58 | if not name.startswith("__")} |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 59 | |
| 60 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 61 | def fill_path(path: str, **params) -> str: |
| 62 | for name, val in params.items(): |
| 63 | if val is not None: |
| 64 | path = path.replace("{" + name + "}", val) |
| 65 | return path |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 66 | |
| 67 | |
| 68 | class ResultStorage(IResultStorage): |
| 69 | # TODO: check that all path components match required patterns |
| 70 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 71 | ts_header_size = 64 |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 72 | ts_header_format = "!IIIcc" |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 73 | ts_arr_tag = 'csv' |
kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame] | 74 | csv_file_encoding = 'ascii' |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 75 | |
| 76 | def __init__(self, storage: Storage) -> None: |
| 77 | self.storage = storage |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 78 | self.cache = {} # type: Dict[str, Tuple[int, int, ArrayData]] |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 79 | |
| 80 | def sync(self) -> None: |
| 81 | self.storage.sync() |
| 82 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 83 | # ----------------- SERIALIZATION / DESERIALIZATION ------------------------------------------------------------- |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 84 | def read_headers(self, fd) -> Tuple[str, List[str], List[str], Optional[numpy.ndarray]]: |
| 85 | header = fd.readline().decode(self.csv_file_encoding).rstrip().split(",") |
| 86 | dtype, has_header2, header2_dtype, *ext_header = header |
| 87 | |
| 88 | if has_header2 == 'true': |
| 89 | ln = fd.readline().decode(self.csv_file_encoding).strip() |
| 90 | header2 = numpy.fromstring(ln, sep=',', dtype=header2_dtype) |
| 91 | else: |
| 92 | assert has_header2 == 'false', \ |
| 93 | "In file {} has_header2 is not true/false, but {!r}".format(fd.name, has_header2) |
| 94 | header2 = None |
| 95 | return dtype, ext_header, header, header2 |
| 96 | |
| 97 | def load_array(self, path: str) -> ArrayData: |
| 98 | """ |
| 99 | Load array from file, shoult not be called directly |
| 100 | :param path: file path |
| 101 | :return: ArrayData |
| 102 | """ |
kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame] | 103 | with self.storage.get_fd(path, "rb") as fd: |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 104 | fd.seek(0, os.SEEK_SET) |
| 105 | |
kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame] | 106 | stats = os.fstat(fd.fileno()) |
| 107 | if path in self.cache: |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 108 | size, atime, arr_info = self.cache[path] |
kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame] | 109 | if size == stats.st_size and atime == stats.st_atime_ns: |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 110 | return arr_info |
kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame] | 111 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 112 | data_dtype, header, _, header2 = self.read_headers(fd) |
| 113 | assert data_dtype == 'uint64', path |
| 114 | dt = fd.read().decode(self.csv_file_encoding).strip() |
kdanylov aka koder | 150b219 | 2017-04-01 16:53:01 +0300 | [diff] [blame] | 115 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 116 | if len(dt) != 0: |
| 117 | arr = numpy.fromstring(dt.replace("\n", ','), sep=',', dtype=data_dtype) |
| 118 | lines = dt.count("\n") + 1 |
| 119 | assert len(set(ln.count(',') for ln in dt.split("\n"))) == 1, \ |
| 120 | "Data lines in {!r} have different element count".format(path) |
| 121 | arr.shape = [lines] if lines == arr.size else [lines, -1] |
| 122 | else: |
| 123 | arr = None |
kdanylov aka koder | 150b219 | 2017-04-01 16:53:01 +0300 | [diff] [blame] | 124 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 125 | arr_data = ArrayData(header, header2, arr) |
| 126 | self.cache[path] = (stats.st_size, stats.st_atime_ns, arr_data) |
| 127 | return arr_data |
kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame] | 128 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 129 | def put_array(self, path: str, data: numpy.array, header: List[str], header2: numpy.ndarray = None, |
| 130 | append_on_exists: bool = False) -> None: |
kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame] | 131 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 132 | header = [data.dtype.name] + \ |
| 133 | (['false', ''] if header2 is None else ['true', header2.dtype.name]) + \ |
| 134 | header |
kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame] | 135 | |
| 136 | exists = append_on_exists and path in self.storage |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 137 | vw = data.view().reshape((data.shape[0], 1)) if len(data.shape) == 1 else data |
| 138 | mode = "cb" if not exists else "rb+" |
kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame] | 139 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 140 | with self.storage.get_fd(path, mode) as fd: |
kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame] | 141 | if exists: |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 142 | data_dtype, _, full_header, curr_header2 = self.read_headers(fd) |
| 143 | |
| 144 | assert data_dtype == data.dtype.name, \ |
| 145 | "Path {!r}. Passed data type ({!r}) and current data type ({!r}) doesn't match"\ |
| 146 | .format(path, data.dtype.name, data_dtype) |
| 147 | |
| 148 | assert header == full_header, \ |
| 149 | "Path {!r}. Passed header ({!r}) and current header ({!r}) doesn't match"\ |
| 150 | .format(path, header, full_header) |
| 151 | |
| 152 | assert header2 == curr_header2, \ |
| 153 | "Path {!r}. Passed header2 != current header2: {!r}\n{!r}"\ |
| 154 | .format(path, header2, curr_header2) |
| 155 | |
kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame] | 156 | fd.seek(0, os.SEEK_END) |
| 157 | else: |
| 158 | fd.write((",".join(header) + "\n").encode(self.csv_file_encoding)) |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 159 | if header2 is not None: |
| 160 | fd.write((",".join(map(str, header2)) + "\n").encode(self.csv_file_encoding)) |
kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame] | 161 | |
| 162 | numpy.savetxt(fd, vw, delimiter=',', newline="\n", fmt="%lu") |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 163 | |
| 164 | def load_ts(self, ds: DataSource, path: str) -> TimeSeries: |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 165 | """ |
| 166 | Load time series, generated by fio or other tool, should not be called directly, |
| 167 | use iter_ts istead. |
| 168 | :param ds: data source path |
| 169 | :param path: path in data storage |
| 170 | :return: TimeSeries |
| 171 | """ |
| 172 | (units, time_units), header2, data = self.load_array(path) |
| 173 | times = data[:,0] |
| 174 | ts_data = data[:,1:] |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 175 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 176 | if ts_data.shape[1] == 1: |
| 177 | ts_data.shape = (ts_data.shape[0],) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 178 | |
| 179 | return TimeSeries("{}.{}".format(ds.dev, ds.sensor), |
| 180 | raw=None, |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 181 | data=ts_data, |
| 182 | times=times, |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 183 | source=ds, |
| 184 | units=units, |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 185 | time_units=time_units, |
| 186 | histo_bins=header2) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 187 | |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 188 | def load_sensor_raw(self, ds: DataSource) -> bytes: |
| 189 | path = DB_paths.sensor_data.format(**ds.__dict__) |
| 190 | with self.storage.get_fd(path, "rb") as fd: |
| 191 | return fd.read() |
| 192 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 193 | def load_sensor(self, ds: DataSource) -> TimeSeries: |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 194 | # sensors has no shape |
| 195 | path = DB_paths.sensor_time.format(**ds.__dict__) |
| 196 | collect_header, must_be_none, collected_at = self.load_array(path) |
| 197 | |
| 198 | # cut 'collection end' time |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 199 | # .copy needed to really remove 'collection end' element to make c_interpolate_.. works correctly |
| 200 | collected_at = collected_at[::2].copy() |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 201 | |
| 202 | # there must be no histogram for collected_at |
| 203 | assert must_be_none is None, "Extra header2 {!r} in collect_at file at {!r}".format(must_be_none, path) |
| 204 | assert collect_header == [ds.node_id, 'collected_at', 'us'],\ |
| 205 | "Unexpected collect_at header {!r} at {!r}".format(collect_header, path) |
| 206 | assert len(collected_at.shape) == 1, "Collected_at must be 1D at {!r}".format(path) |
| 207 | |
| 208 | data_path = DB_paths.sensor_data.format(**ds.__dict__) |
| 209 | data_header, must_be_none, data = self.load_array(data_path) |
| 210 | |
| 211 | # there must be no histogram for any sensors |
| 212 | assert must_be_none is None, "Extra header2 {!r} in sensor data file {!r}".format(must_be_none, data_path) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 213 | |
| 214 | data_units = data_header[2] |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 215 | assert data_header == [ds.node_id, ds.metric_fqdn, data_units], \ |
| 216 | "Unexpected data header {!r} at {!r}".format(data_header, data_path) |
| 217 | assert len(data.shape) == 1, "Sensor data must be 1D at {!r}".format(data_path) |
kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame] | 218 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 219 | return TimeSeries(ds.metric_fqdn, |
| 220 | raw=None, |
| 221 | data=data, |
| 222 | times=collected_at, |
| 223 | source=ds, |
| 224 | units=data_units, |
| 225 | time_units='us') |
| 226 | |
| 227 | # ------------- CHECK DATA IN STORAGE ---------------------------------------------------------------------------- |
| 228 | |
| 229 | def check_plot_file(self, source: DataSource) -> Optional[str]: |
| 230 | path = DB_paths.plot.format(**source.__dict__) |
kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame] | 231 | fpath = self.storage.resolve_raw(DB_paths.report_root + path) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 232 | return path if os.path.exists(fpath) else None |
| 233 | |
| 234 | # ------------- PUT DATA INTO STORAGE -------------------------------------------------------------------------- |
| 235 | |
| 236 | def put_or_check_suite(self, suite: SuiteConfig) -> None: |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 237 | path = DB_paths.suite_cfg.format(suite_id=suite.storage_id) |
| 238 | if path in self.storage: |
kdanylov aka koder | 150b219 | 2017-04-01 16:53:01 +0300 | [diff] [blame] | 239 | db_cfg = self.storage.load(SuiteConfig, path) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 240 | if db_cfg != suite: |
| 241 | logger.error("Current suite %s config is not equal to found in storage at %s", suite.test_type, path) |
kdanylov aka koder | 150b219 | 2017-04-01 16:53:01 +0300 | [diff] [blame] | 242 | logger.debug("Current: \n%s\nStorage:\n%s", pprint.pformat(db_cfg), pprint.pformat(suite)) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 243 | raise StopTestError() |
kdanylov aka koder | 150b219 | 2017-04-01 16:53:01 +0300 | [diff] [blame] | 244 | else: |
| 245 | self.storage.put(suite, path) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 246 | |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 247 | def put_job(self, suite: SuiteConfig, job: JobConfig) -> None: |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 248 | path = DB_paths.job_cfg.format(suite_id=suite.storage_id, job_id=job.storage_id) |
| 249 | self.storage.put(job, path) |
| 250 | |
| 251 | def put_ts(self, ts: TimeSeries) -> None: |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 252 | assert ts.data.dtype == ts.times.dtype, "Data type {!r} != time type {!r}".format(ts.data.dtype, ts.times.dtype) |
| 253 | assert ts.data.dtype.kind == 'u', "Only unsigned ints are accepted" |
| 254 | assert ts.source.tag == self.ts_arr_tag, "Incorrect source tag == {!r}, must be {!r}".format(ts.source.tag, |
| 255 | self.ts_arr_tag) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 256 | csv_path = DB_paths.ts.format(**ts.source.__dict__) |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 257 | header = [ts.units, ts.time_units] |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 258 | |
kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame] | 259 | tv = ts.times.view().reshape((-1, 1)) |
| 260 | if len(ts.data.shape) == 1: |
| 261 | dv = ts.data.view().reshape((ts.times.shape[0], -1)) |
| 262 | else: |
| 263 | dv = ts.data |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 264 | |
kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame] | 265 | result = numpy.concatenate((tv, dv), axis=1) |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 266 | if ts.histo_bins is not None: |
| 267 | self.put_array(csv_path, result, header, header2=ts.histo_bins) |
| 268 | else: |
| 269 | self.put_array(csv_path, result, header) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 270 | |
| 271 | if ts.raw: |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 272 | raw_path = DB_paths.ts.format(**ts.source(tag=ts.raw_tag).__dict__) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 273 | self.storage.put_raw(ts.raw, raw_path) |
| 274 | |
| 275 | def put_extra(self, data: bytes, source: DataSource) -> None: |
kdanylov aka koder | 150b219 | 2017-04-01 16:53:01 +0300 | [diff] [blame] | 276 | self.storage.put_raw(data, DB_paths.ts.format(**source.__dict__)) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 277 | |
| 278 | def put_stat(self, data: StatProps, source: DataSource) -> None: |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 279 | self.storage.put(data, DB_paths.stat.format(**source.__dict__)) |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 280 | |
| 281 | # return path to file to be inserted into report |
| 282 | def put_plot_file(self, data: bytes, source: DataSource) -> str: |
| 283 | path = DB_paths.plot.format(**source.__dict__) |
kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame] | 284 | self.storage.put_raw(data, DB_paths.report_root + path) |
| 285 | return path |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 286 | |
koder aka kdanilov | 108ac36 | 2017-01-19 20:17:16 +0200 | [diff] [blame] | 287 | def put_report(self, report: str, name: str) -> str: |
kdanylov aka koder | 0e0cfcb | 2017-03-27 22:19:09 +0300 | [diff] [blame] | 288 | return self.storage.put_raw(report.encode(self.csv_file_encoding), DB_paths.report_root + name) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 289 | |
kdanylov aka koder | 4518318 | 2017-04-30 23:55:40 +0300 | [diff] [blame] | 290 | def put_sensor_raw(self, data: bytes, ds: DataSource) -> None: |
| 291 | path = DB_paths.sensor_data.format(**ds.__dict__) |
| 292 | with self.storage.get_fd(path, "cb") as fd: |
| 293 | fd.write(data) |
| 294 | |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 295 | def append_sensor(self, data: numpy.array, ds: DataSource, units: str, histo_bins: numpy.ndarray = None) -> None: |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 296 | if ds.metric == 'collected_at': |
| 297 | path = DB_paths.sensor_time |
| 298 | metrics_fqn = 'collected_at' |
| 299 | else: |
| 300 | path = DB_paths.sensor_data |
| 301 | metrics_fqn = ds.metric_fqdn |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 302 | |
| 303 | if ds.metric == 'lat': |
| 304 | assert len(data.shape) == 2, "Latency should be histo array" |
| 305 | assert histo_bins is not None, "Latency should have histo bins" |
| 306 | |
| 307 | path = path.format(**ds.__dict__) |
| 308 | self.put_array(path, data, [ds.node_id, metrics_fqn, units], header2=histo_bins, append_on_exists=True) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 309 | |
| 310 | # ------------- GET DATA FROM STORAGE -------------------------------------------------------------------------- |
| 311 | |
| 312 | def get_stat(self, stat_cls: Type[StatProps], source: DataSource) -> StatProps: |
| 313 | return self.storage.load(stat_cls, DB_paths.stat.format(**source.__dict__)) |
| 314 | |
| 315 | # ------------- ITER OVER STORAGE ------------------------------------------------------------------------------ |
| 316 | |
| 317 | def iter_paths(self, path_glob) -> Iterator[Tuple[bool, str, Dict[str, str]]]: |
| 318 | path = path_glob.format(**DB_rr).split("/") |
| 319 | yield from self.storage._iter_paths("", path, {}) |
| 320 | |
| 321 | def iter_suite(self, suite_type: str = None) -> Iterator[SuiteConfig]: |
| 322 | for is_file, suite_info_path, groups in self.iter_paths(DB_paths.suite_cfg_r): |
| 323 | assert is_file |
| 324 | suite = self.storage.load(SuiteConfig, suite_info_path) |
| 325 | # suite = cast(SuiteConfig, self.storage.load(SuiteConfig, suite_info_path)) |
| 326 | assert suite.storage_id == groups['suite_id'] |
| 327 | if not suite_type or suite.test_type == suite_type: |
| 328 | yield suite |
| 329 | |
| 330 | def iter_job(self, suite: SuiteConfig) -> Iterator[JobConfig]: |
| 331 | job_glob = fill_path(DB_paths.job_cfg_r, suite_id=suite.storage_id) |
| 332 | job_config_cls = all_suits[suite.test_type].job_config_cls |
| 333 | for is_file, path, groups in self.iter_paths(job_glob): |
| 334 | assert is_file |
| 335 | job = cast(JobConfig, self.storage.load(job_config_cls, path)) |
| 336 | assert job.storage_id == groups['job_id'] |
| 337 | yield job |
| 338 | |
| 339 | # iterate over test tool data |
| 340 | def iter_ts(self, suite: SuiteConfig, job: JobConfig, **filters) -> Iterator[TimeSeries]: |
| 341 | filters.update(suite_id=suite.storage_id, job_id=job.storage_id) |
| 342 | ts_glob = fill_path(DB_paths.ts_r, **filters) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 343 | for is_file, path, groups in self.iter_paths(ts_glob): |
kdanylov aka koder | 150b219 | 2017-04-01 16:53:01 +0300 | [diff] [blame] | 344 | tag = groups["tag"] |
| 345 | if tag != 'csv': |
| 346 | continue |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 347 | assert is_file |
| 348 | groups = groups.copy() |
| 349 | groups.update(filters) |
| 350 | ds = DataSource(suite_id=suite.storage_id, |
| 351 | job_id=job.storage_id, |
| 352 | node_id=groups["node_id"], |
| 353 | sensor=groups["sensor"], |
| 354 | dev=None, |
| 355 | metric=groups["metric"], |
kdanylov aka koder | 150b219 | 2017-04-01 16:53:01 +0300 | [diff] [blame] | 356 | tag=tag) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 357 | yield self.load_ts(ds, path) |
| 358 | |
| 359 | def iter_sensors(self, node_id: str = None, sensor: str = None, dev: str = None, metric: str = None) -> \ |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 360 | Iterator[Tuple[str, DataSource]]: |
| 361 | vls = dict(node_id=node_id, sensor=sensor, dev=dev, metric=metric) |
| 362 | path = fill_path(DB_paths.sensor_data_r, **vls) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 363 | for is_file, path, groups in self.iter_paths(path): |
kdanylov aka koder | cdfcdaf | 2017-04-29 10:03:39 +0300 | [diff] [blame] | 364 | cvls = vls.copy() |
| 365 | cvls.update(groups) |
| 366 | yield path, DataSource(**cvls) |
koder aka kdanilov | a732a60 | 2017-02-01 20:29:56 +0200 | [diff] [blame] | 367 | |
| 368 | |