| import os |
| import pprint |
| import logging |
| from typing import cast, Iterator, Tuple, Type, Dict, Optional, List |
| |
| import numpy |
| |
| from .suits.job import JobConfig |
| from .result_classes import SuiteConfig, TimeSeries, DataSource, StatProps, IResultStorage, ArrayData |
| from .storage import Storage |
| from .utils import StopTestError |
| from .suits.all_suits import all_suits |
| |
| |
| logger = logging.getLogger('wally') |
| |
| |
| class DB_re: |
| node_id = r'\d+.\d+.\d+.\d+:\d+' |
| job_id = r'[-a-zA-Z0-9_]+_\d+' |
| suite_id = r'[a-z_]+_\d+' |
| sensor = r'[-a-z_]+' |
| dev = r'[-a-zA-Z0-9_]+' |
| tag = r'[a-z_.]+' |
| metric = r'[a-z_.]+' |
| |
| |
| class DB_paths: |
| suite_cfg_r = r'results/{suite_id}\.info\.yml' |
| |
| job_root = r'results/{suite_id}\.{job_id}/' |
| job_cfg_r = job_root + r'info\.yml' |
| |
| # time series, data from load tool, sensor is a tool name |
| ts_r = job_root + r'{node_id}\.{sensor}\.{metric}\.{tag}' |
| |
| # statistica data for ts |
| stat_r = job_root + r'{node_id}\.{sensor}\.{metric}\.stat\.yaml' |
| |
| # sensor data |
| sensor_data_r = r'sensors/{node_id}_{sensor}\.{dev}\.{metric}\.{tag}' |
| sensor_time_r = r'sensors/{node_id}_collected_at\.csv' |
| |
| report_root = 'report/' |
| plot_r = r'{suite_id}\.{job_id}/{node_id}\.{sensor}\.{dev}\.{metric}\.{tag}' |
| |
| job_cfg = job_cfg_r.replace("\\.", '.') |
| suite_cfg = suite_cfg_r.replace("\\.", '.') |
| ts = ts_r.replace("\\.", '.') |
| stat = stat_r.replace("\\.", '.') |
| sensor_data = sensor_data_r.replace("\\.", '.') |
| sensor_time = sensor_time_r.replace("\\.", '.') |
| plot = plot_r.replace("\\.", '.') |
| |
| |
| DB_rr = {name: r"(?P<{}>{})".format(name, rr) |
| for name, rr in DB_re.__dict__.items() |
| if not name.startswith("__")} |
| |
| |
| def fill_path(path: str, **params) -> str: |
| for name, val in params.items(): |
| if val is not None: |
| path = path.replace("{" + name + "}", val) |
| return path |
| |
| |
| class ResultStorage(IResultStorage): |
| # TODO: check that all path components match required patterns |
| |
| ts_header_size = 64 |
| ts_header_format = "!IIIcc" |
| ts_arr_tag = 'csv' |
| csv_file_encoding = 'ascii' |
| |
| def __init__(self, storage: Storage) -> None: |
| self.storage = storage |
| self.cache = {} # type: Dict[str, Tuple[int, int, ArrayData]] |
| |
| def sync(self) -> None: |
| self.storage.sync() |
| |
| # ----------------- SERIALIZATION / DESERIALIZATION ------------------------------------------------------------- |
| def read_headers(self, fd) -> Tuple[str, List[str], List[str], Optional[numpy.ndarray]]: |
| header = fd.readline().decode(self.csv_file_encoding).rstrip().split(",") |
| dtype, has_header2, header2_dtype, *ext_header = header |
| |
| if has_header2 == 'true': |
| ln = fd.readline().decode(self.csv_file_encoding).strip() |
| header2 = numpy.fromstring(ln, sep=',', dtype=header2_dtype) |
| else: |
| assert has_header2 == 'false', \ |
| "In file {} has_header2 is not true/false, but {!r}".format(fd.name, has_header2) |
| header2 = None |
| return dtype, ext_header, header, header2 |
| |
| def load_array(self, path: str) -> ArrayData: |
| """ |
| Load array from file, shoult not be called directly |
| :param path: file path |
| :return: ArrayData |
| """ |
| with self.storage.get_fd(path, "rb") as fd: |
| fd.seek(0, os.SEEK_SET) |
| |
| stats = os.fstat(fd.fileno()) |
| if path in self.cache: |
| size, atime, arr_info = self.cache[path] |
| if size == stats.st_size and atime == stats.st_atime_ns: |
| return arr_info |
| |
| data_dtype, header, _, header2 = self.read_headers(fd) |
| assert data_dtype == 'uint64', path |
| dt = fd.read().decode(self.csv_file_encoding).strip() |
| |
| if len(dt) != 0: |
| arr = numpy.fromstring(dt.replace("\n", ','), sep=',', dtype=data_dtype) |
| lines = dt.count("\n") + 1 |
| assert len(set(ln.count(',') for ln in dt.split("\n"))) == 1, \ |
| "Data lines in {!r} have different element count".format(path) |
| arr.shape = [lines] if lines == arr.size else [lines, -1] |
| else: |
| arr = None |
| |
| arr_data = ArrayData(header, header2, arr) |
| self.cache[path] = (stats.st_size, stats.st_atime_ns, arr_data) |
| return arr_data |
| |
| def put_array(self, path: str, data: numpy.array, header: List[str], header2: numpy.ndarray = None, |
| append_on_exists: bool = False) -> None: |
| |
| header = [data.dtype.name] + \ |
| (['false', ''] if header2 is None else ['true', header2.dtype.name]) + \ |
| header |
| |
| exists = append_on_exists and path in self.storage |
| vw = data.view().reshape((data.shape[0], 1)) if len(data.shape) == 1 else data |
| mode = "cb" if not exists else "rb+" |
| |
| with self.storage.get_fd(path, mode) as fd: |
| if exists: |
| data_dtype, _, full_header, curr_header2 = self.read_headers(fd) |
| |
| assert data_dtype == data.dtype.name, \ |
| "Path {!r}. Passed data type ({!r}) and current data type ({!r}) doesn't match"\ |
| .format(path, data.dtype.name, data_dtype) |
| |
| assert header == full_header, \ |
| "Path {!r}. Passed header ({!r}) and current header ({!r}) doesn't match"\ |
| .format(path, header, full_header) |
| |
| assert header2 == curr_header2, \ |
| "Path {!r}. Passed header2 != current header2: {!r}\n{!r}"\ |
| .format(path, header2, curr_header2) |
| |
| fd.seek(0, os.SEEK_END) |
| else: |
| fd.write((",".join(header) + "\n").encode(self.csv_file_encoding)) |
| if header2 is not None: |
| fd.write((",".join(map(str, header2)) + "\n").encode(self.csv_file_encoding)) |
| |
| numpy.savetxt(fd, vw, delimiter=',', newline="\n", fmt="%lu") |
| |
| def load_ts(self, ds: DataSource, path: str) -> TimeSeries: |
| """ |
| Load time series, generated by fio or other tool, should not be called directly, |
| use iter_ts istead. |
| :param ds: data source path |
| :param path: path in data storage |
| :return: TimeSeries |
| """ |
| (units, time_units), header2, data = self.load_array(path) |
| times = data[:,0] |
| ts_data = data[:,1:] |
| |
| if ts_data.shape[1] == 1: |
| ts_data.shape = (ts_data.shape[0],) |
| |
| return TimeSeries("{}.{}".format(ds.dev, ds.sensor), |
| raw=None, |
| data=ts_data, |
| times=times, |
| source=ds, |
| units=units, |
| time_units=time_units, |
| histo_bins=header2) |
| |
| def load_sensor_raw(self, ds: DataSource) -> bytes: |
| path = DB_paths.sensor_data.format(**ds.__dict__) |
| with self.storage.get_fd(path, "rb") as fd: |
| return fd.read() |
| |
| def load_sensor(self, ds: DataSource) -> TimeSeries: |
| # sensors has no shape |
| path = DB_paths.sensor_time.format(**ds.__dict__) |
| collect_header, must_be_none, collected_at = self.load_array(path) |
| |
| # cut 'collection end' time |
| # .copy needed to really remove 'collection end' element to make c_interpolate_.. works correctly |
| collected_at = collected_at[::2].copy() |
| |
| # there must be no histogram for collected_at |
| assert must_be_none is None, "Extra header2 {!r} in collect_at file at {!r}".format(must_be_none, path) |
| assert collect_header == [ds.node_id, 'collected_at', 'us'],\ |
| "Unexpected collect_at header {!r} at {!r}".format(collect_header, path) |
| assert len(collected_at.shape) == 1, "Collected_at must be 1D at {!r}".format(path) |
| |
| data_path = DB_paths.sensor_data.format(**ds.__dict__) |
| data_header, must_be_none, data = self.load_array(data_path) |
| |
| # there must be no histogram for any sensors |
| assert must_be_none is None, "Extra header2 {!r} in sensor data file {!r}".format(must_be_none, data_path) |
| |
| data_units = data_header[2] |
| assert data_header == [ds.node_id, ds.metric_fqdn, data_units], \ |
| "Unexpected data header {!r} at {!r}".format(data_header, data_path) |
| assert len(data.shape) == 1, "Sensor data must be 1D at {!r}".format(data_path) |
| |
| return TimeSeries(ds.metric_fqdn, |
| raw=None, |
| data=data, |
| times=collected_at, |
| source=ds, |
| units=data_units, |
| time_units='us') |
| |
| # ------------- CHECK DATA IN STORAGE ---------------------------------------------------------------------------- |
| |
| def check_plot_file(self, source: DataSource) -> Optional[str]: |
| path = DB_paths.plot.format(**source.__dict__) |
| fpath = self.storage.resolve_raw(DB_paths.report_root + path) |
| return path if os.path.exists(fpath) else None |
| |
| # ------------- PUT DATA INTO STORAGE -------------------------------------------------------------------------- |
| |
| def put_or_check_suite(self, suite: SuiteConfig) -> None: |
| path = DB_paths.suite_cfg.format(suite_id=suite.storage_id) |
| if path in self.storage: |
| db_cfg = self.storage.load(SuiteConfig, path) |
| if db_cfg != suite: |
| logger.error("Current suite %s config is not equal to found in storage at %s", suite.test_type, path) |
| logger.debug("Current: \n%s\nStorage:\n%s", pprint.pformat(db_cfg), pprint.pformat(suite)) |
| raise StopTestError() |
| else: |
| self.storage.put(suite, path) |
| |
| def put_job(self, suite: SuiteConfig, job: JobConfig) -> None: |
| path = DB_paths.job_cfg.format(suite_id=suite.storage_id, job_id=job.storage_id) |
| self.storage.put(job, path) |
| |
| def put_ts(self, ts: TimeSeries) -> None: |
| assert ts.data.dtype == ts.times.dtype, "Data type {!r} != time type {!r}".format(ts.data.dtype, ts.times.dtype) |
| assert ts.data.dtype.kind == 'u', "Only unsigned ints are accepted" |
| assert ts.source.tag == self.ts_arr_tag, "Incorrect source tag == {!r}, must be {!r}".format(ts.source.tag, |
| self.ts_arr_tag) |
| csv_path = DB_paths.ts.format(**ts.source.__dict__) |
| header = [ts.units, ts.time_units] |
| |
| tv = ts.times.view().reshape((-1, 1)) |
| if len(ts.data.shape) == 1: |
| dv = ts.data.view().reshape((ts.times.shape[0], -1)) |
| else: |
| dv = ts.data |
| |
| result = numpy.concatenate((tv, dv), axis=1) |
| if ts.histo_bins is not None: |
| self.put_array(csv_path, result, header, header2=ts.histo_bins) |
| else: |
| self.put_array(csv_path, result, header) |
| |
| if ts.raw: |
| raw_path = DB_paths.ts.format(**ts.source(tag=ts.raw_tag).__dict__) |
| self.storage.put_raw(ts.raw, raw_path) |
| |
| def put_extra(self, data: bytes, source: DataSource) -> None: |
| self.storage.put_raw(data, DB_paths.ts.format(**source.__dict__)) |
| |
| def put_stat(self, data: StatProps, source: DataSource) -> None: |
| self.storage.put(data, DB_paths.stat.format(**source.__dict__)) |
| |
| # return path to file to be inserted into report |
| def put_plot_file(self, data: bytes, source: DataSource) -> str: |
| path = DB_paths.plot.format(**source.__dict__) |
| self.storage.put_raw(data, DB_paths.report_root + path) |
| return path |
| |
| def put_report(self, report: str, name: str) -> str: |
| return self.storage.put_raw(report.encode(self.csv_file_encoding), DB_paths.report_root + name) |
| |
| def put_sensor_raw(self, data: bytes, ds: DataSource) -> None: |
| path = DB_paths.sensor_data.format(**ds.__dict__) |
| with self.storage.get_fd(path, "cb") as fd: |
| fd.write(data) |
| |
| def append_sensor(self, data: numpy.array, ds: DataSource, units: str, histo_bins: numpy.ndarray = None) -> None: |
| if ds.metric == 'collected_at': |
| path = DB_paths.sensor_time |
| metrics_fqn = 'collected_at' |
| else: |
| path = DB_paths.sensor_data |
| metrics_fqn = ds.metric_fqdn |
| |
| if ds.metric == 'lat': |
| assert len(data.shape) == 2, "Latency should be histo array" |
| assert histo_bins is not None, "Latency should have histo bins" |
| |
| path = path.format(**ds.__dict__) |
| self.put_array(path, data, [ds.node_id, metrics_fqn, units], header2=histo_bins, append_on_exists=True) |
| |
| # ------------- GET DATA FROM STORAGE -------------------------------------------------------------------------- |
| |
| def get_stat(self, stat_cls: Type[StatProps], source: DataSource) -> StatProps: |
| return self.storage.load(stat_cls, DB_paths.stat.format(**source.__dict__)) |
| |
| # ------------- ITER OVER STORAGE ------------------------------------------------------------------------------ |
| |
| def iter_paths(self, path_glob) -> Iterator[Tuple[bool, str, Dict[str, str]]]: |
| path = path_glob.format(**DB_rr).split("/") |
| yield from self.storage._iter_paths("", path, {}) |
| |
| def iter_suite(self, suite_type: str = None) -> Iterator[SuiteConfig]: |
| for is_file, suite_info_path, groups in self.iter_paths(DB_paths.suite_cfg_r): |
| assert is_file |
| suite = self.storage.load(SuiteConfig, suite_info_path) |
| # suite = cast(SuiteConfig, self.storage.load(SuiteConfig, suite_info_path)) |
| assert suite.storage_id == groups['suite_id'] |
| if not suite_type or suite.test_type == suite_type: |
| yield suite |
| |
| def iter_job(self, suite: SuiteConfig) -> Iterator[JobConfig]: |
| job_glob = fill_path(DB_paths.job_cfg_r, suite_id=suite.storage_id) |
| job_config_cls = all_suits[suite.test_type].job_config_cls |
| for is_file, path, groups in self.iter_paths(job_glob): |
| assert is_file |
| job = cast(JobConfig, self.storage.load(job_config_cls, path)) |
| assert job.storage_id == groups['job_id'] |
| yield job |
| |
| # iterate over test tool data |
| def iter_ts(self, suite: SuiteConfig, job: JobConfig, **filters) -> Iterator[TimeSeries]: |
| filters.update(suite_id=suite.storage_id, job_id=job.storage_id) |
| ts_glob = fill_path(DB_paths.ts_r, **filters) |
| for is_file, path, groups in self.iter_paths(ts_glob): |
| tag = groups["tag"] |
| if tag != 'csv': |
| continue |
| assert is_file |
| groups = groups.copy() |
| groups.update(filters) |
| ds = DataSource(suite_id=suite.storage_id, |
| job_id=job.storage_id, |
| node_id=groups["node_id"], |
| sensor=groups["sensor"], |
| dev=None, |
| metric=groups["metric"], |
| tag=tag) |
| yield self.load_ts(ds, path) |
| |
| def iter_sensors(self, node_id: str = None, sensor: str = None, dev: str = None, metric: str = None) -> \ |
| Iterator[Tuple[str, DataSource]]: |
| vls = dict(node_id=node_id, sensor=sensor, dev=dev, metric=metric) |
| path = fill_path(DB_paths.sensor_data_r, **vls) |
| for is_file, path, groups in self.iter_paths(path): |
| cvls = vls.copy() |
| cvls.update(groups) |
| yield path, DataSource(**cvls) |
| |
| |