| import array |
| from typing import Dict, List, Any, Optional, Tuple, cast |
| |
| |
| import numpy |
| from scipy.stats.mstats_basic import NormaltestResult |
| |
| |
| from .node_interfaces import IRPCNode |
| from .istorable import IStorable, Storable |
| from .utils import round_digits, Number |
| |
| |
| class TestJobConfig(Storable): |
| def __init__(self) -> None: |
| self.summary = None # type: str |
| |
| |
| class TestSuiteConfig(IStorable): |
| """ |
| Test suite input configuration. |
| |
| test_type - test type name |
| params - parameters from yaml file for this test |
| run_uuid - UUID to be used to create file names & Co |
| nodes - nodes to run tests on |
| remote_dir - directory on nodes to be used for local files |
| """ |
| def __init__(self, |
| test_type: str, |
| params: Dict[str, Any], |
| run_uuid: str, |
| nodes: List[IRPCNode], |
| remote_dir: str) -> None: |
| self.test_type = test_type |
| self.params = params |
| self.run_uuid = run_uuid |
| self.nodes = nodes |
| self.nodes_ids = [node.info.node_id() for node in nodes] |
| self.remote_dir = remote_dir |
| |
| def __eq__(self, other: 'TestSuiteConfig') -> bool: |
| return (self.test_type == other.test_type and |
| self.params == other.params and |
| set(self.nodes_ids) == set(other.nodes_ids)) |
| |
| def raw(self) -> Dict[str, Any]: |
| res = self.__dict__.copy() |
| del res['nodes'] |
| del res['run_uuid'] |
| del res['remote_dir'] |
| return res |
| |
| @classmethod |
| def fromraw(cls, data: Dict[str, Any]) -> 'IStorable': |
| obj = cls.__new__(cls) |
| data = data.copy() |
| data['nodes'] = None |
| data['run_uuid'] = None |
| data['remote_dir'] = None |
| obj.__dict__.update(data) |
| return obj |
| |
| |
| class TimeSeries: |
| """Data series from sensor - either system sensor or from load generator tool (e.g. fio)""" |
| |
| def __init__(self, |
| name: str, |
| raw: Optional[bytes], |
| data: array.array, |
| times: array.array, |
| second_axis_size: int = 1, |
| bins_edges: List[float] = None) -> None: |
| |
| # Sensor name. Typically DEV_NAME.METRIC |
| self.name = name |
| |
| # Time series times and values. Time in ms from Unix epoch. |
| self.times = times # type: List[int] |
| self.data = data # type: List[int] |
| |
| # Not equal to 1 in case of 2d sensors, like latency, when each measurement is a histogram. |
| self.second_axis_size = second_axis_size |
| |
| # Raw sensor data (is provided). Like log file for fio iops/bw/lat. |
| self.raw = raw |
| |
| # bin edges for historgam timeseries |
| self.bins_edges = bins_edges |
| |
| |
| # (node_name, source_dev, metric_name) => metric_results |
| JobMetrics = Dict[Tuple[str, str, str], TimeSeries] |
| |
| |
| class StatProps(IStorable): |
| "Statistic properties for timeseries with unknown data distribution" |
| def __init__(self, data: List[Number]) -> None: |
| self.perc_99 = None # type: float |
| self.perc_95 = None # type: float |
| self.perc_90 = None # type: float |
| self.perc_50 = None # type: float |
| |
| self.min = None # type: Number |
| self.max = None # type: Number |
| |
| # bin_center: bin_count |
| self.bins_populations = None # type: List[int] |
| self.bins_edges = None # type: List[float] |
| self.data = data |
| |
| def __str__(self) -> str: |
| res = ["{}(size = {}):".format(self.__class__.__name__, len(self.data))] |
| for name in ["perc_50", "perc_90", "perc_95", "perc_99"]: |
| res.append(" {} = {}".format(name, round_digits(getattr(self, name)))) |
| res.append(" range {} {}".format(round_digits(self.min), round_digits(self.max))) |
| return "\n".join(res) |
| |
| def __repr__(self) -> str: |
| return str(self) |
| |
| def raw(self) -> Dict[str, Any]: |
| data = self.__dict__.copy() |
| data['bins_edges'] = list(self.bins_edges) |
| data['bins_populations'] = list(self.bins_populations) |
| return data |
| |
| @classmethod |
| def fromraw(cls, data: Dict[str, Any]) -> 'StatProps': |
| data['bins_edges'] = numpy.array(data['bins_edges']) |
| data['bins_populations'] = numpy.array(data['bins_populations']) |
| res = cls.__new__(cls) |
| res.__dict__.update(data) |
| return res |
| |
| |
| class HistoStatProps(StatProps): |
| """Statistic properties for 2D timeseries with unknown data distribution and histogram as input value. |
| Used for latency""" |
| def __init__(self, data: List[Number], second_axis_size: int) -> None: |
| self.second_axis_size = second_axis_size |
| StatProps.__init__(self, data) |
| |
| |
| class NormStatProps(StatProps): |
| "Statistic properties for timeseries with normal data distribution. Used for iops/bw" |
| def __init__(self, data: List[Number]) -> None: |
| StatProps.__init__(self, data) |
| |
| self.average = None # type: float |
| self.deviation = None # type: float |
| self.confidence = None # type: float |
| self.confidence_level = None # type: float |
| self.normtest = None # type: NormaltestResult |
| |
| def __str__(self) -> str: |
| res = ["NormStatProps(size = {}):".format(len(self.data)), |
| " distr = {} ~ {}".format(round_digits(self.average), round_digits(self.deviation)), |
| " confidence({0.confidence_level}) = {1}".format(self, round_digits(self.confidence)), |
| " perc_50 = {}".format(round_digits(self.perc_50)), |
| " perc_90 = {}".format(round_digits(self.perc_90)), |
| " perc_95 = {}".format(round_digits(self.perc_95)), |
| " perc_99 = {}".format(round_digits(self.perc_99)), |
| " range {} {}".format(round_digits(self.min), round_digits(self.max)), |
| " normtest = {0.normtest}".format(self)] |
| return "\n".join(res) |
| |
| def raw(self) -> Dict[str, Any]: |
| data = self.__dict__.copy() |
| data['normtest'] = (data['nortest'].statistic, data['nortest'].pvalue) |
| data['bins_edges'] = list(self.bins_edges) |
| return data |
| |
| @classmethod |
| def fromraw(cls, data: Dict[str, Any]) -> 'NormStatProps': |
| data['normtest'] = NormaltestResult(*data['normtest']) |
| obj = StatProps.fromraw(data) |
| obj.__class__ = cls |
| return cast('NormStatProps', obj) |
| |
| |
| JobStatMetrics = Dict[Tuple[str, str, str], StatProps] |
| |
| |
| class TestJobResult: |
| """Contains done test job information""" |
| |
| def __init__(self, |
| info: TestJobConfig, |
| begin_time: int, |
| end_time: int, |
| raw: JobMetrics) -> None: |
| self.info = info |
| self.run_interval = (begin_time, end_time) |
| self.raw = raw # type: JobMetrics |
| self.processed = None # type: JobStatMetrics |