| import sys |
| import math |
| import itertools |
| |
| from colorama import Fore, Style |
| |
| |
| def med_dev(vals): |
| med = sum(vals) / len(vals) |
| dev = ((sum(abs(med - i) ** 2 for i in vals) / len(vals)) ** 0.5) |
| return int(med), int(dev) |
| |
| |
| def round_deviation(med_dev): |
| med, dev = med_dev |
| |
| if dev < 1E-7: |
| return med_dev |
| |
| dev_div = 10.0 ** (math.floor(math.log10(dev)) - 1) |
| dev = int(dev / dev_div) * dev_div |
| med = int(med / dev_div) * dev_div |
| return (type(med_dev[0])(med), |
| type(med_dev[1])(dev)) |
| |
| |
| def groupby_globally(data, key_func): |
| grouped = {} |
| grouped_iter = itertools.groupby(data, key_func) |
| |
| for (bs, cache_tp, act, conc), curr_data_it in grouped_iter: |
| key = (bs, cache_tp, act, conc) |
| grouped.setdefault(key, []).extend(curr_data_it) |
| |
| return grouped |
| |
| |
| class Data(object): |
| def __init__(self, name): |
| self.name = name |
| self.series = {} |
| self.processed_series = {} |
| |
| |
| def process_inplace(data): |
| processed = {} |
| for key, values in data.series.items(): |
| processed[key] = round_deviation(med_dev(values)) |
| data.processed_series = processed |
| |
| |
| def diff_table(*datas): |
| res_table = {} |
| |
| for key in datas[0].processed_series: |
| baseline = datas[0].processed_series[key] |
| base_max = baseline[0] + baseline[1] |
| base_min = baseline[0] - baseline[1] |
| |
| res_line = [baseline] |
| |
| for data in datas[1:]: |
| val, dev = data.processed_series[key] |
| val_min = val - dev |
| val_max = val + dev |
| |
| diff_1 = int(float(val_min - base_max) / base_max * 100) |
| diff_2 = int(float(val_max - base_min) / base_max * 100) |
| |
| diff_max = max(diff_1, diff_2) |
| diff_min = min(diff_1, diff_2) |
| |
| res_line.append((diff_max, diff_min)) |
| res_table[key] = res_line |
| |
| return [data.name for data in datas], res_table |
| |
| |
| def print_table(headers, table): |
| lines = [] |
| items = sorted(table.items()) |
| lines.append([(len(i), i) for i in [""] + headers]) |
| item_frmt = "{0}{1:>4}{2} ~ {3}{4:>4}{5}" |
| |
| for key, vals in items: |
| ln1 = "{0:>4} {1} {2:>9} {3}".format(*map(str, key)) |
| ln2 = "{0:>4} ~ {1:>3}".format(*vals[0]) |
| |
| line = [(len(ln1), ln1), (len(ln2), ln2)] |
| |
| for idx, val in enumerate(vals[1:], 2): |
| cval = [] |
| for vl in val: |
| if vl < -10: |
| cval.extend([Fore.RED, vl, Style.RESET_ALL]) |
| elif vl > 10: |
| cval.extend([Fore.GREEN, vl, Style.RESET_ALL]) |
| else: |
| cval.extend(["", vl, ""]) |
| |
| ln = len(item_frmt.format("", cval[1], "", "", cval[4], "")) |
| line.append((ln, item_frmt.format(*cval))) |
| |
| lines.append(line) |
| |
| max_columns_with = [] |
| for idx in range(len(lines[0])): |
| max_columns_with.append( |
| max(line[idx][0] for line in lines)) |
| |
| sep = '-' * (4 + sum(max_columns_with) + 3 * (len(lines[0]) - 1)) |
| |
| print sep |
| for idx, line in enumerate(lines): |
| cline = [] |
| for (curr_len, txt), exp_ln in zip(line, max_columns_with): |
| cline.append(" " * (exp_ln - curr_len) + txt) |
| print "| " + " | ".join(cline) + " |" |
| if 0 == idx: |
| print sep |
| print sep |
| |
| |
| def key_func(x): |
| return (x['__meta__']['blocksize'], |
| 'd' if x['__meta__']['direct_io'] else 's', |
| x['__meta__']['action'], |
| x['__meta__']['concurence']) |
| |
| |
| template = "{bs:>4} {action:>12} {cache_tp:>3} {conc:>4}" |
| template += " | {iops[0]:>6} ~ {iops[1]:>5} | {bw[0]:>7} ~ {bw[1]:>6}" |
| template += " | {lat[0]:>6} ~ {lat[1]:>5} |" |
| |
| headers = dict(bs="BS", |
| action="operation", |
| cache_tp="S/D", |
| conc="CONC", |
| iops=("IOPS", "dev"), |
| bw=("BW kBps", "dev"), |
| lat=("LAT ms", "dev")) |
| |
| |
| def load_io_py_file(fname): |
| with open(fname) as fc: |
| block = None |
| for line in fc: |
| if line.startswith("{'__meta__':"): |
| block = line |
| elif block is not None: |
| block += line |
| |
| if block is not None and block.count('}') == block.count('{'): |
| yield eval(block) |
| block = None |
| |
| if block is not None and block.count('}') == block.count('{'): |
| yield eval(block) |
| |
| |
| def main(argv): |
| items = [] |
| CONC_POS = 3 |
| for hdr_fname in argv[1:]: |
| hdr, fname = hdr_fname.split("=", 1) |
| data = list(load_io_py_file(fname)) |
| item = Data(hdr) |
| for key, vals in groupby_globally(data, key_func).items(): |
| item.series[key] = [val['iops'] * key[CONC_POS] for val in vals] |
| process_inplace(item) |
| items.append(item) |
| |
| print_table(*diff_table(*items)) |
| |
| # print template.format(**headers) |
| |
| # for (bs, cache_tp, act, conc), curr_data in sorted(grouped.items()): |
| # iops = med_dev([i['iops'] * int(conc) for i in curr_data]) |
| # bw_mean = med_dev([i['bw_mean'] * int(conc) for i in curr_data]) |
| # lat = med_dev([i['lat'] / 1000 for i in curr_data]) |
| |
| # iops = round_deviation(iops) |
| # bw_mean = round_deviation(bw_mean) |
| # lat = round_deviation(lat) |
| |
| # params = dict( |
| # bs=bs, |
| # action=act, |
| # cache_tp=cache_tp, |
| # iops=iops, |
| # bw=bw_mean, |
| # lat=lat, |
| # conc=conc |
| # ) |
| |
| # print template.format(**params) |
| |
| |
| if __name__ == "__main__": |
| exit(main(sys.argv)) |
| |
| # vals = [(123, 23), (125678, 5678), (123.546756, 23.77), |
| # (123.546756, 102.77), (0.1234, 0.0224), |
| # (0.001234, 0.000224), (0.001234, 0.0000224)] |
| # for val in : |
| # print val, "=>", round_deviation(val) |