blob: 9166b0aec8cf2932cc04563bb5a1e4ee8fa7e72a [file] [log] [blame]
import sys
import math
import itertools
from colorama import Fore, Style
def med_dev(vals):
med = sum(vals) / len(vals)
dev = ((sum(abs(med - i) ** 2 for i in vals) / len(vals)) ** 0.5)
return int(med), int(dev)
def round_deviation(med_dev):
med, dev = med_dev
if dev < 1E-7:
return med_dev
dev_div = 10.0 ** (math.floor(math.log10(dev)) - 1)
dev = int(dev / dev_div) * dev_div
med = int(med / dev_div) * dev_div
return (type(med_dev[0])(med),
type(med_dev[1])(dev))
def groupby_globally(data, key_func):
grouped = {}
grouped_iter = itertools.groupby(data, key_func)
for (bs, cache_tp, act, conc), curr_data_it in grouped_iter:
key = (bs, cache_tp, act, conc)
grouped.setdefault(key, []).extend(curr_data_it)
return grouped
class Data(object):
def __init__(self, name):
self.name = name
self.series = {}
self.processed_series = {}
def process_inplace(data):
processed = {}
for key, values in data.series.items():
processed[key] = round_deviation(med_dev(values))
data.processed_series = processed
def diff_table(*datas):
res_table = {}
for key in datas[0].processed_series:
baseline = datas[0].processed_series[key]
base_max = baseline[0] + baseline[1]
base_min = baseline[0] - baseline[1]
res_line = [baseline]
for data in datas[1:]:
val, dev = data.processed_series[key]
val_min = val - dev
val_max = val + dev
diff_1 = int(float(val_min - base_max) / base_max * 100)
diff_2 = int(float(val_max - base_min) / base_max * 100)
diff_max = max(diff_1, diff_2)
diff_min = min(diff_1, diff_2)
res_line.append((diff_max, diff_min))
res_table[key] = res_line
return [data.name for data in datas], res_table
def print_table(headers, table):
lines = []
items = sorted(table.items())
lines.append([(len(i), i) for i in [""] + headers])
item_frmt = "{0}{1:>4}{2} ~ {3}{4:>4}{5}"
for key, vals in items:
ln1 = "{0:>4} {1} {2:>9} {3}".format(*map(str, key))
ln2 = "{0:>4} ~ {1:>3}".format(*vals[0])
line = [(len(ln1), ln1), (len(ln2), ln2)]
for idx, val in enumerate(vals[1:], 2):
cval = []
for vl in val:
if vl < -10:
cval.extend([Fore.RED, vl, Style.RESET_ALL])
elif vl > 10:
cval.extend([Fore.GREEN, vl, Style.RESET_ALL])
else:
cval.extend(["", vl, ""])
ln = len(item_frmt.format("", cval[1], "", "", cval[4], ""))
line.append((ln, item_frmt.format(*cval)))
lines.append(line)
max_columns_with = []
for idx in range(len(lines[0])):
max_columns_with.append(
max(line[idx][0] for line in lines))
sep = '-' * (4 + sum(max_columns_with) + 3 * (len(lines[0]) - 1))
print sep
for idx, line in enumerate(lines):
cline = []
for (curr_len, txt), exp_ln in zip(line, max_columns_with):
cline.append(" " * (exp_ln - curr_len) + txt)
print "| " + " | ".join(cline) + " |"
if 0 == idx:
print sep
print sep
def key_func(x):
return (x['__meta__']['blocksize'],
'd' if x['__meta__']['direct_io'] else 's',
x['__meta__']['action'],
x['__meta__']['concurence'])
template = "{bs:>4} {action:>12} {cache_tp:>3} {conc:>4}"
template += " | {iops[0]:>6} ~ {iops[1]:>5} | {bw[0]:>7} ~ {bw[1]:>6}"
template += " | {lat[0]:>6} ~ {lat[1]:>5} |"
headers = dict(bs="BS",
action="operation",
cache_tp="S/D",
conc="CONC",
iops=("IOPS", "dev"),
bw=("BW kBps", "dev"),
lat=("LAT ms", "dev"))
def load_io_py_file(fname):
with open(fname) as fc:
block = None
for line in fc:
if line.startswith("{'__meta__':"):
block = line
elif block is not None:
block += line
if block is not None and block.count('}') == block.count('{'):
yield eval(block)
block = None
if block is not None and block.count('}') == block.count('{'):
yield eval(block)
def main(argv):
items = []
CONC_POS = 3
for hdr_fname in argv[1:]:
hdr, fname = hdr_fname.split("=", 1)
data = list(load_io_py_file(fname))
item = Data(hdr)
for key, vals in groupby_globally(data, key_func).items():
item.series[key] = [val['iops'] * key[CONC_POS] for val in vals]
process_inplace(item)
items.append(item)
print_table(*diff_table(*items))
# print template.format(**headers)
# for (bs, cache_tp, act, conc), curr_data in sorted(grouped.items()):
# iops = med_dev([i['iops'] * int(conc) for i in curr_data])
# bw_mean = med_dev([i['bw_mean'] * int(conc) for i in curr_data])
# lat = med_dev([i['lat'] / 1000 for i in curr_data])
# iops = round_deviation(iops)
# bw_mean = round_deviation(bw_mean)
# lat = round_deviation(lat)
# params = dict(
# bs=bs,
# action=act,
# cache_tp=cache_tp,
# iops=iops,
# bw=bw_mean,
# lat=lat,
# conc=conc
# )
# print template.format(**params)
if __name__ == "__main__":
exit(main(sys.argv))
# vals = [(123, 23), (125678, 5678), (123.546756, 23.77),
# (123.546756, 102.77), (0.1234, 0.0224),
# (0.001234, 0.000224), (0.001234, 0.0000224)]
# for val in :
# print val, "=>", round_deviation(val)