| import math |
| import logging |
| import itertools |
| from typing import List, Callable, Iterable, cast, Tuple |
| |
| import numpy |
| from scipy import stats, optimize |
| from numpy import linalg |
| from numpy.polynomial.chebyshev import chebfit, chebval |
| |
| |
| from .result_classes import NormStatProps, HistoStatProps, TimeSeries |
| from .utils import Number |
| |
| |
| logger = logging.getLogger("wally") |
| DOUBLE_DELTA = 1e-8 |
| MIN_VALUES_FOR_CONFIDENCE = 7 |
| |
| |
| average = numpy.mean |
| dev = lambda x: math.sqrt(numpy.var(x, ddof=1)) |
| |
| |
| def calc_norm_stat_props(ts: TimeSeries, bins_count: int = None, confidence: float = 0.95) -> NormStatProps: |
| "Calculate statistical properties of array of numbers" |
| |
| # array.array has very basic support |
| data = cast(List[int], ts.data) |
| res = NormStatProps(data) # type: ignore |
| |
| if len(data) == 0: |
| raise ValueError("Input array is empty") |
| |
| data = sorted(data) |
| res.average = average(data) |
| res.deviation = dev(data) |
| |
| res.max = data[-1] |
| res.min = data[0] |
| |
| pcs = numpy.percentile(data, q=[1.0, 5.0, 10., 50., 90., 95., 99.]) |
| res.perc_1, res.perc_5, res.perc_10, res.perc_50, res.perc_90, res.perc_95, res.perc_99 = pcs |
| |
| if len(data) >= MIN_VALUES_FOR_CONFIDENCE: |
| res.confidence = stats.sem(data) * \ |
| stats.t.ppf((1 + confidence) / 2, len(data) - 1) |
| res.confidence_level = confidence |
| else: |
| res.confidence = None |
| res.confidence_level = None |
| |
| if bins_count is not None: |
| res.bins_populations, res.bins_edges = numpy.histogram(data, bins=bins_count) |
| res.bins_edges = res.bins_edges[:-1] |
| |
| try: |
| res.normtest = stats.mstats.normaltest(data) |
| except Exception as exc: |
| logger.warning("stats.mstats.normaltest failed with error: %s", exc) |
| |
| res.skew = stats.skew(data) |
| res.kurt = stats.kurtosis(data) |
| |
| return res |
| |
| |
| # update this code |
| def rebin_histogram(bins_populations: numpy.array, |
| bins_edges: numpy.array, |
| new_bins_count: int, |
| left_tail_idx: int = None, |
| right_tail_idx: int = None, |
| log_bins: bool = False) -> Tuple[numpy.array, numpy.array]: |
| # rebin large histogram into smaller with new_bins bins, linearly distributes across |
| # left_tail_idx:right_tail_idx range |
| |
| assert len(bins_populations.shape) == 1 |
| assert len(bins_edges.shape) == 1 |
| assert bins_edges.shape[0] == bins_populations.shape[0] |
| |
| if left_tail_idx is None: |
| min_val = bins_edges[0] |
| else: |
| min_val = bins_edges[left_tail_idx] |
| |
| if right_tail_idx is None: |
| max_val = bins_edges[-1] |
| else: |
| max_val = bins_edges[right_tail_idx] |
| |
| if log_bins: |
| assert min_val > 1E-3 |
| step = (max_val / min_val) ** (1 / new_bins_count) |
| new_bins_edges = min_val * (step ** numpy.arange(new_bins_count)) # type: numpy.array |
| else: |
| new_bins_edges = numpy.linspace(min_val, max_val, new_bins_count + 1, dtype='float')[:-1] # type: numpy.array |
| |
| old_bins_pos = numpy.searchsorted(new_bins_edges, bins_edges, side='right') |
| new_bins = numpy.zeros(new_bins_count, dtype=int) # type: numpy.array |
| |
| # last source bin can't be split |
| # TODO: need to add assert for this |
| new_bins[-1] += bins_populations[-1] |
| bin_sizes = bins_edges[1:] - bins_edges[:-1] |
| |
| # correct position to get bin idx from edge idx |
| old_bins_pos -= 1 |
| old_bins_pos[old_bins_pos < 0] = 0 |
| new_bins_sizes = new_bins_edges[1:] - new_bins_edges[:-1] |
| |
| for population, begin, end, bsize in zip(bins_populations[:-1], old_bins_pos[:-1], old_bins_pos[1:], bin_sizes): |
| if begin == end: |
| new_bins[begin] += population |
| else: |
| density = population / bsize |
| for curr_box in range(begin, end): |
| cnt = min(int(new_bins_sizes[begin] * density + 0.5), population) |
| new_bins[begin] += cnt |
| population -= cnt |
| |
| return new_bins, new_bins_edges |
| |
| |
| def calc_histo_stat_props(ts: TimeSeries, |
| bins_edges: numpy.array = None, |
| rebins_count: int = None, |
| tail: float = 0.005) -> HistoStatProps: |
| if bins_edges is None: |
| bins_edges = ts.histo_bins |
| |
| res = HistoStatProps(ts.data) |
| |
| # summ across all series |
| aggregated = ts.data.sum(axis=0, dtype='int') |
| total = aggregated.sum() |
| |
| # percentiles levels |
| expected = list(numpy.array([0.01, 0.05, 0.1, 0.5, 0.9, 0.95, 0.99]) * total) |
| cumsum = numpy.cumsum(aggregated) |
| |
| percentiles_bins = numpy.searchsorted(cumsum, expected) |
| percentiles = bins_edges[percentiles_bins] |
| res.perc_1, res.perc_5, res.perc_10, res.perc_50, res.perc_90, res.perc_95, res.perc_99 = percentiles |
| |
| # don't show tail ranges on histogram |
| left_tail_idx, right_tail_idx = numpy.searchsorted(cumsum, [tail * total, (1 - tail) * total]) |
| |
| # minimax and maximal non-zero elements |
| non_zero = numpy.nonzero(aggregated)[0] |
| res.min = bins_edges[aggregated[non_zero[0]]] |
| res.max = bins_edges[non_zero[-1] + (1 if non_zero[-1] != len(bins_edges) else 0)] |
| |
| res.log_bins = False |
| if rebins_count is not None: |
| res.bins_populations, res.bins_edges = rebin_histogram(aggregated, bins_edges, rebins_count, |
| left_tail_idx, right_tail_idx) |
| else: |
| res.bins_populations = aggregated |
| res.bins_edges = bins_edges.copy() |
| |
| return res |
| |
| |
| def groupby_globally(data: Iterable, key_func: Callable): |
| grouped = {} # type: ignore |
| grouped_iter = itertools.groupby(data, key_func) |
| |
| for (bs, cache_tp, act, conc), curr_data_it in grouped_iter: |
| key = (bs, cache_tp, act, conc) |
| grouped.setdefault(key, []).extend(curr_data_it) |
| |
| return grouped |
| |
| |
| def approximate_curve(x: List[Number], y: List[float], xnew: List[Number], curved_coef: int) -> List[float]: |
| """returns ynew - y values of some curve approximation""" |
| return cast(List[float], chebval(xnew, chebfit(x, y, curved_coef))) |
| |
| |
| def approximate_line(x: List[Number], y: List[float], xnew: List[Number], relative_dist: bool = False) -> List[float]: |
| """ |
| x, y - test data, xnew - dots, where we want find approximation |
| if not relative_dist distance = y - newy |
| returns ynew - y values of linear approximation |
| """ |
| ox = numpy.array(x) |
| oy = numpy.array(y) |
| |
| # set approximation function |
| def func_line(tpl, x): |
| return tpl[0] * x + tpl[1] |
| |
| def error_func_rel(tpl, x, y): |
| return 1.0 - y / func_line(tpl, x) |
| |
| def error_func_abs(tpl, x, y): |
| return y - func_line(tpl, x) |
| |
| # choose distance mode |
| error_func = error_func_rel if relative_dist else error_func_abs |
| |
| tpl_initial = tuple(linalg.solve([[ox[0], 1.0], [ox[1], 1.0]], |
| oy[:2])) |
| |
| # find line |
| tpl_final, success = optimize.leastsq(error_func, tpl_initial[:], args=(ox, oy)) |
| |
| # if error |
| if success not in range(1, 5): |
| raise ValueError("No line for this dots") |
| |
| # return new dots |
| return func_line(tpl_final, numpy.array(xnew)) |
| |
| |
| def moving_average(data: numpy.array, window: int) -> numpy.array: |
| cumsum = numpy.cumsum(data) |
| cumsum[window:] = cumsum[window:] - cumsum[:-window] |
| return cumsum[window - 1:] / window |
| |
| |
| def moving_dev(data: numpy.array, window: int) -> numpy.array: |
| cumsum = numpy.cumsum(data) |
| cumsum2 = numpy.cumsum(data ** 2) |
| cumsum[window:] = cumsum[window:] - cumsum[:-window] |
| cumsum2[window:] = cumsum2[window:] - cumsum2[:-window] |
| return ((cumsum2[window - 1:] - cumsum[window - 1:] ** 2 / window) / (window - 1)) ** 0.5 |
| |
| |
| def find_ouliers(data: numpy.array, |
| center_range: Tuple[int, int] = (25, 75), |
| cut_range: float = 3.0) -> numpy.array: |
| v1, v2 = numpy.percentile(data, center_range) |
| return numpy.abs(data - (v1 + v2) / 2) > ((v2 - v1) / 2 * cut_range) |
| |
| |
| def find_ouliers_ts(data: numpy.array, |
| windows_size: int = 30, |
| center_range: Tuple[int, int] = (25, 75), |
| cut_range: float = 3.0) -> numpy.array: |
| outliers = numpy.empty(data.shape, dtype=bool) |
| |
| if len(data) < windows_size: |
| outliers[:] = False |
| return outliers |
| |
| begin_idx = 0 |
| if len(data) < windows_size * 2: |
| end_idx = (len(data) % windows_size) // 2 + windows_size |
| else: |
| end_idx = len(data) |
| |
| while True: |
| cdata = data[begin_idx: end_idx] |
| outliers[begin_idx: end_idx] = find_ouliers(cdata, center_range, cut_range) |
| begin_idx = end_idx |
| |
| if end_idx == len(data): |
| break |
| |
| end_idx += windows_size |
| if len(data) - end_idx < windows_size: |
| end_idx = len(data) |
| |
| return outliers |
| |
| |
| def hist_outliers_nd(bin_populations: numpy.array, |
| bin_centers: numpy.array, |
| center_range: Tuple[int, int] = (25, 75), |
| cut_range: float = 3.0) -> Tuple[int, int]: |
| assert len(bin_populations) == len(bin_centers) |
| total_count = bin_populations.sum() |
| |
| perc25 = total_count / 100.0 * center_range[0] |
| perc75 = total_count / 100.0 * center_range[1] |
| |
| perc25_idx, perc75_idx = numpy.searchsorted(numpy.cumsum(bin_populations), [perc25, perc75]) |
| middle = (bin_centers[perc75_idx] + bin_centers[perc25_idx]) / 2 |
| r = (bin_centers[perc75_idx] - bin_centers[perc25_idx]) / 2 |
| |
| lower_bound = middle - r * cut_range |
| upper_bound = middle + r * cut_range |
| |
| lower_cut_idx, upper_cut_idx = numpy.searchsorted(bin_centers, [lower_bound, upper_bound]) |
| return lower_cut_idx, upper_cut_idx |
| |
| |
| def hist_outliers_perc(bin_populations: numpy.array, |
| bounds_perc: Tuple[float, float] = (0.01, 0.99), |
| min_bins_left: int = None) -> Tuple[int, int]: |
| assert len(bin_populations.shape) == 1 |
| total_count = bin_populations.sum() |
| lower_perc = total_count * bounds_perc[0] |
| upper_perc = total_count * bounds_perc[1] |
| idx1, idx2 = numpy.searchsorted(numpy.cumsum(bin_populations), [lower_perc, upper_perc]) |
| |
| # don't cut too many bins. At least min_bins_left must left |
| if min_bins_left is not None and idx2 - idx1 < min_bins_left: |
| missed = min_bins_left - (idx2 - idx1) // 2 |
| idx2 = min(len(bin_populations), idx2 + missed) |
| idx1 = max(0, idx1 - missed) |
| |
| return idx1, idx2 |
| |
| |
| def ts_hist_outliers_perc(bin_populations: numpy.array, |
| window_size: int = 10, |
| bounds_perc: Tuple[float, float] = (0.01, 0.99), |
| min_bins_left: int = None) -> Tuple[int, int]: |
| assert len(bin_populations.shape) == 2 |
| |
| points = list(range(0, len(bin_populations), window_size)) |
| if len(bin_populations) % window_size != 0: |
| points.append(points[-1] + window_size) |
| |
| ranges = [] # type: List[List[int]] |
| for begin, end in zip(points[:-1], points[1:]): |
| window_hist = bin_populations[begin:end].sum(axis=0) |
| ranges.append(hist_outliers_perc(window_hist, bounds_perc=bounds_perc, min_bins_left=min_bins_left)) |
| |
| return min(i[0] for i in ranges), max(i[1] for i in ranges) |
| |
| |
| # TODO: revise next |
| # def difference(y, ynew): |
| # """returns average and maximum relative and |
| # absolute differences between y and ynew |
| # result may contain None values for y = 0 |
| # return value - tuple: |
| # [(abs dif, rel dif) * len(y)], |
| # (abs average, abs max), |
| # (rel average, rel max)""" |
| # |
| # abs_dlist = [] |
| # rel_dlist = [] |
| # |
| # for y1, y2 in zip(y, ynew): |
| # # absolute |
| # abs_dlist.append(y1 - y2) |
| # |
| # if y1 > 1E-6: |
| # rel_dlist.append(abs(abs_dlist[-1] / y1)) |
| # else: |
| # raise ZeroDivisionError("{0!r} is too small".format(y1)) |
| # |
| # da_avg = sum(abs_dlist) / len(abs_dlist) |
| # dr_avg = sum(rel_dlist) / len(rel_dlist) |
| # |
| # return (zip(abs_dlist, rel_dlist), |
| # (da_avg, max(abs_dlist)), (dr_avg, max(rel_dlist)) |
| # ) |