| import math |
| import itertools |
| |
| try: |
| from scipy import stats |
| from numpy import array, linalg |
| from scipy.optimize import leastsq |
| from numpy.polynomial.chebyshev import chebfit, chebval |
| no_numpy = False |
| except ImportError: |
| no_numpy = True |
| |
| |
| def average(data): |
| return sum(data) / len(data) |
| |
| |
| def med_dev(vals): |
| if len(vals) == 1: |
| return vals[0], 0.0 |
| |
| med = sum(vals) / len(vals) |
| dev = ((sum(abs(med - i) ** 2.0 for i in vals) / (len(vals) - 1)) ** 0.5) |
| return med, dev |
| |
| |
| def round_3_digit(val): |
| return round_deviation((val, val / 10.0))[0] |
| |
| |
| def round_deviation(med_dev): |
| med, dev = med_dev |
| |
| if dev < 1E-7: |
| return med_dev |
| |
| dev_div = 10.0 ** (math.floor(math.log10(dev)) - 1) |
| dev = int(dev / dev_div) * dev_div |
| med = int(med / dev_div) * dev_div |
| return [type(med_dev[0])(med), |
| type(med_dev[1])(dev)] |
| |
| |
| def groupby_globally(data, key_func): |
| grouped = {} |
| grouped_iter = itertools.groupby(data, key_func) |
| |
| for (bs, cache_tp, act, conc), curr_data_it in grouped_iter: |
| key = (bs, cache_tp, act, conc) |
| grouped.setdefault(key, []).extend(curr_data_it) |
| |
| return grouped |
| |
| |
| def approximate_curve(x, y, xnew, curved_coef): |
| """returns ynew - y values of some curve approximation""" |
| if no_numpy: |
| return None |
| |
| return chebval(xnew, chebfit(x, y, curved_coef)) |
| |
| |
| def approximate_line(x, y, xnew, relative_dist=False): |
| """ x, y - test data, xnew - dots, where we want find approximation |
| if not relative_dist distance = y - newy |
| returns ynew - y values of linear approximation""" |
| |
| if no_numpy: |
| return None |
| |
| # convert to numpy.array (don't work without it) |
| ox = array(x) |
| oy = array(y) |
| |
| # set approximation function |
| def func_line(tpl, x): |
| return tpl[0] * x + tpl[1] |
| |
| def error_func_rel(tpl, x, y): |
| return 1.0 - y / func_line(tpl, x) |
| |
| def error_func_abs(tpl, x, y): |
| return y - func_line(tpl, x) |
| |
| # choose distance mode |
| error_func = error_func_rel if relative_dist else error_func_abs |
| |
| tpl_initial = tuple(linalg.solve([[ox[0], 1.0], [ox[1], 1.0]], |
| oy[:2])) |
| |
| # find line |
| tpl_final, success = leastsq(error_func, |
| tpl_initial[:], |
| args=(ox, oy)) |
| |
| # if error |
| if success not in range(1, 5): |
| raise ValueError("No line for this dots") |
| |
| # return new dots |
| return func_line(tpl_final, array(xnew)) |
| |
| |
| def difference(y, ynew): |
| """returns average and maximum relative and |
| absolute differences between y and ynew |
| result may contain None values for y = 0 |
| return value - tuple: |
| [(abs dif, rel dif) * len(y)], |
| (abs average, abs max), |
| (rel average, rel max)""" |
| |
| abs_dlist = [] |
| rel_dlist = [] |
| |
| for y1, y2 in zip(y, ynew): |
| # absolute |
| abs_dlist.append(y1 - y2) |
| |
| if y1 > 1E-6: |
| rel_dlist.append(abs(abs_dlist[-1] / y1)) |
| else: |
| raise ZeroDivisionError("{0!r} is too small".format(y1)) |
| |
| da_avg = sum(abs_dlist) / len(abs_dlist) |
| dr_avg = sum(rel_dlist) / len(rel_dlist) |
| |
| return (zip(abs_dlist, rel_dlist), |
| (da_avg, max(abs_dlist)), (dr_avg, max(rel_dlist)) |
| ) |
| |
| |
| def calculate_distribution_properties(data): |
| """chi, etc""" |
| |
| |
| def minimal_measurement_count(data, max_diff, req_probability): |
| """ |
| should returns amount of measurements to get results (avg and deviation) |
| with error less, that max_diff in at least req_probability% cases |
| """ |
| |
| |
| class StatProps(object): |
| def __init__(self): |
| self.average = None |
| self.mediana = None |
| self.perc_95 = None |
| self.perc_5 = None |
| self.deviation = None |
| self.confidence = None |
| self.min = None |
| self.max = None |
| self.raw = None |
| |
| def rounded_average_conf(self): |
| return round_deviation((self.average, self.confidence)) |
| |
| def rounded_average_dev(self): |
| return round_deviation((self.average, self.deviation)) |
| |
| def __str__(self): |
| return "StatProps({0} ~ {1})".format(round_3_digit(self.average), |
| round_3_digit(self.deviation)) |
| |
| def __repr__(self): |
| return str(self) |
| |
| |
| def data_property(data, confidence=0.95): |
| res = StatProps() |
| if len(data) == 0: |
| return res |
| |
| data = sorted(data) |
| res.average, res.deviation = med_dev(data) |
| res.max = data[-1] |
| res.min = data[0] |
| |
| ln = len(data) |
| if ln % 2 == 0: |
| res.mediana = (data[ln / 2] + data[ln / 2 - 1]) / 2 |
| else: |
| res.mediana = data[ln / 2] |
| |
| res.perc_95 = data[int((ln - 1) * 0.95)] |
| res.perc_5 = data[int((ln - 1) * 0.05)] |
| |
| if not no_numpy and ln >= 3: |
| res.confidence = stats.sem(data) * \ |
| stats.t.ppf((1 + confidence) / 2, ln - 1) |
| else: |
| res.confidence = res.deviation |
| |
| res.raw = data[:] |
| return res |