| import os |
| import csv |
| import bisect |
| import logging |
| import itertools |
| import collections |
| from cStringIO import StringIO |
| |
| try: |
| import numpy |
| import scipy |
| import matplotlib.pyplot as plt |
| except ImportError: |
| plt = None |
| |
| import wally |
| from wally.utils import ssize2b |
| from wally.statistic import round_3_digit, data_property |
| from wally.suits.io.fio_task_parser import (get_test_sync_mode, |
| get_test_summary, |
| parse_all_in_1, |
| abbv_name_to_full) |
| |
| |
| logger = logging.getLogger("wally.report") |
| |
| |
| class DiskInfo(object): |
| def __init__(self): |
| self.direct_iops_r_max = 0 |
| self.direct_iops_w_max = 0 |
| |
| # 64 used instead of 4k to faster feed caches |
| self.direct_iops_w64_max = 0 |
| |
| self.rws4k_10ms = 0 |
| self.rws4k_30ms = 0 |
| self.rws4k_100ms = 0 |
| self.bw_write_max = 0 |
| self.bw_read_max = 0 |
| |
| |
| report_funcs = [] |
| |
| |
| class Attrmapper(object): |
| def __init__(self, dct): |
| self.__dct = dct |
| |
| def __getattr__(self, name): |
| try: |
| return self.__dct[name] |
| except KeyError: |
| raise AttributeError(name) |
| |
| |
| class PerfInfo(object): |
| def __init__(self, name, summary, intervals, params, testnodes_count): |
| self.name = name |
| self.bw = None |
| self.iops = None |
| self.lat = None |
| self.lat_50 = None |
| self.lat_95 = None |
| |
| self.raw_bw = [] |
| self.raw_iops = [] |
| self.raw_lat = [] |
| |
| self.params = params |
| self.intervals = intervals |
| self.testnodes_count = testnodes_count |
| self.summary = summary |
| self.p = Attrmapper(self.params.vals) |
| |
| self.sync_mode = get_test_sync_mode(self.params) |
| self.concurence = self.params.vals.get('numjobs', 1) |
| |
| |
| # disk_info = None |
| # base = None |
| # linearity = None |
| |
| |
| def group_by_name(test_data): |
| name_map = collections.defaultdict(lambda: []) |
| |
| for data in test_data: |
| name_map[(data.config.name, data.summary())].append(data) |
| |
| return name_map |
| |
| |
| def get_lat_perc_50_95(lat_mks): |
| curr_perc = 0 |
| perc_50 = None |
| perc_95 = None |
| pkey = None |
| for key, val in sorted(lat_mks.items()): |
| if curr_perc + val >= 50 and perc_50 is None: |
| if pkey is None or val < 1.: |
| perc_50 = key |
| else: |
| perc_50 = (50. - curr_perc) / val * (key - pkey) + pkey |
| |
| if curr_perc + val >= 95: |
| if pkey is None or val < 1.: |
| perc_95 = key |
| else: |
| perc_95 = (95. - curr_perc) / val * (key - pkey) + pkey |
| break |
| |
| pkey = key |
| curr_perc += val |
| |
| return perc_50 / 1000., perc_95 / 1000. |
| |
| |
| def process_disk_info(test_data): |
| |
| name_map = group_by_name(test_data) |
| data = {} |
| for (name, summary), results in name_map.items(): |
| lat_mks = collections.defaultdict(lambda: 0) |
| num_res = 0 |
| |
| for result in results: |
| num_res += len(result.raw_result['jobs']) |
| for job_info in result.raw_result['jobs']: |
| for k, v in job_info['latency_ms'].items(): |
| if isinstance(k, str): |
| assert k[:2] == '>=' |
| lat_mks[int(k[2:]) * 1000] += v |
| else: |
| lat_mks[k * 1000] += v |
| |
| for k, v in job_info['latency_us'].items(): |
| lat_mks[k] += v |
| |
| for k, v in lat_mks.items(): |
| lat_mks[k] = float(v) / num_res |
| |
| testnodes_count_set = set(dt.vm_count for dt in results) |
| |
| assert len(testnodes_count_set) == 1 |
| testnodes_count, = testnodes_count_set |
| assert len(results) % testnodes_count == 0 |
| |
| intervals = [result.run_interval for result in results] |
| p = results[0].config |
| pinfo = PerfInfo(p.name, result.summary(), intervals, |
| p, testnodes_count) |
| |
| pinfo.raw_bw = [result.results['bw'] for result in results] |
| pinfo.raw_iops = [result.results['iops'] for result in results] |
| pinfo.raw_lat = [result.results['lat'] for result in results] |
| |
| pinfo.bw = data_property(map(sum, zip(*pinfo.raw_bw))) |
| pinfo.iops = data_property(map(sum, zip(*pinfo.raw_iops))) |
| pinfo.lat = data_property(sum(pinfo.raw_lat, [])) |
| pinfo.lat_50, pinfo.lat_95 = get_lat_perc_50_95(lat_mks) |
| |
| data[(p.name, summary)] = pinfo |
| return data |
| |
| |
| def report(name, required_fields): |
| def closure(func): |
| report_funcs.append((required_fields.split(","), name, func)) |
| return func |
| return closure |
| |
| |
| def get_test_lcheck_params(pinfo): |
| res = [{ |
| 's': 'sync', |
| 'd': 'direct', |
| 'a': 'async', |
| 'x': 'sync direct' |
| }[pinfo.sync_mode]] |
| |
| res.append(pinfo.p.rw) |
| |
| return " ".join(res) |
| |
| |
| def get_emb_data_svg(plt): |
| sio = StringIO() |
| plt.savefig(sio, format='svg') |
| img_start = "<!-- Created with matplotlib (http://matplotlib.org/) -->" |
| return sio.getvalue().split(img_start, 1)[1] |
| |
| |
| def get_template(templ_name): |
| very_root_dir = os.path.dirname(os.path.dirname(wally.__file__)) |
| templ_dir = os.path.join(very_root_dir, 'report_templates') |
| templ_file = os.path.join(templ_dir, templ_name) |
| return open(templ_file, 'r').read() |
| |
| |
| def group_by(data, func): |
| if len(data) < 2: |
| yield data |
| return |
| |
| ndata = [(func(dt), dt) for dt in data] |
| ndata.sort(key=func) |
| pkey, dt = ndata[0] |
| curr_list = [dt] |
| |
| for key, val in ndata[1:]: |
| if pkey != key: |
| yield curr_list |
| curr_list = [val] |
| else: |
| curr_list.append(val) |
| pkey = key |
| |
| yield curr_list |
| |
| |
| @report('linearity', 'linearity_test') |
| def linearity_report(processed_results, lab_info, comment): |
| labels_and_data_mp = collections.defaultdict(lambda: []) |
| vls = {} |
| |
| # plot io_time = func(bsize) |
| for res in processed_results.values(): |
| if res.name.startswith('linearity_test'): |
| iotimes = [1000. / val for val in res.iops.raw] |
| |
| op_summ = get_test_summary(res.params)[:3] |
| |
| labels_and_data_mp[op_summ].append( |
| [res.p.blocksize, res.iops.raw, iotimes]) |
| |
| cvls = res.params.vals.copy() |
| del cvls['blocksize'] |
| del cvls['rw'] |
| |
| cvls.pop('sync', None) |
| cvls.pop('direct', None) |
| cvls.pop('buffered', None) |
| |
| if op_summ not in vls: |
| vls[op_summ] = cvls |
| else: |
| assert cvls == vls[op_summ] |
| |
| all_labels = None |
| _, ax1 = plt.subplots() |
| for name, labels_and_data in labels_and_data_mp.items(): |
| labels_and_data.sort(key=lambda x: ssize2b(x[0])) |
| |
| labels, _, iotimes = zip(*labels_and_data) |
| |
| if all_labels is None: |
| all_labels = labels |
| else: |
| assert all_labels == labels |
| |
| plt.boxplot(iotimes) |
| if len(labels_and_data) > 2 and \ |
| ssize2b(labels_and_data[-2][0]) >= 4096: |
| |
| xt = range(1, len(labels) + 1) |
| |
| def io_time(sz, bw, initial_lat): |
| return sz / bw + initial_lat |
| |
| x = numpy.array(map(ssize2b, labels)) |
| y = numpy.array([sum(dt) / len(dt) for dt in iotimes]) |
| popt, _ = scipy.optimize.curve_fit(io_time, x, y, p0=(100., 1.)) |
| |
| y1 = io_time(x, *popt) |
| plt.plot(xt, y1, linestyle='--', |
| label=name + ' LS linear approx') |
| |
| for idx, (sz, _, _) in enumerate(labels_and_data): |
| if ssize2b(sz) >= 4096: |
| break |
| |
| bw = (x[-1] - x[idx]) / (y[-1] - y[idx]) |
| lat = y[-1] - x[-1] / bw |
| y2 = io_time(x, bw, lat) |
| plt.plot(xt, y2, linestyle='--', |
| label=abbv_name_to_full(name) + |
| ' (4k & max) linear approx') |
| |
| plt.setp(ax1, xticklabels=labels) |
| |
| plt.xlabel("Block size") |
| plt.ylabel("IO time, ms") |
| |
| plt.subplots_adjust(top=0.85) |
| plt.legend(bbox_to_anchor=(0.5, 1.15), |
| loc='upper center', |
| prop={'size': 10}, ncol=2) |
| plt.grid() |
| iotime_plot = get_emb_data_svg(plt) |
| plt.clf() |
| |
| # plot IOPS = func(bsize) |
| _, ax1 = plt.subplots() |
| |
| for name, labels_and_data in labels_and_data_mp.items(): |
| labels_and_data.sort(key=lambda x: ssize2b(x[0])) |
| _, data, _ = zip(*labels_and_data) |
| plt.boxplot(data) |
| avg = [float(sum(arr)) / len(arr) for arr in data] |
| xt = range(1, len(data) + 1) |
| plt.plot(xt, avg, linestyle='--', |
| label=abbv_name_to_full(name) + " avg") |
| |
| plt.setp(ax1, xticklabels=labels) |
| plt.xlabel("Block size") |
| plt.ylabel("IOPS") |
| plt.legend(bbox_to_anchor=(0.5, 1.15), |
| loc='upper center', |
| prop={'size': 10}, ncol=2) |
| plt.grid() |
| plt.subplots_adjust(top=0.85) |
| |
| iops_plot = get_emb_data_svg(plt) |
| |
| res = set(get_test_lcheck_params(res) for res in processed_results.values()) |
| ncount = list(set(res.testnodes_count for res in processed_results.values())) |
| conc = list(set(res.concurence for res in processed_results.values())) |
| |
| assert len(conc) == 1 |
| assert len(ncount) == 1 |
| |
| descr = { |
| 'vm_count': ncount[0], |
| 'concurence': conc[0], |
| 'oper_descr': ", ".join(res).capitalize() |
| } |
| |
| params_map = {'iotime_vs_size': iotime_plot, |
| 'iops_vs_size': iops_plot, |
| 'descr': descr} |
| |
| return get_template('report_linearity.html').format(**params_map) |
| |
| |
| @report('lat_vs_iops', 'lat_vs_iops') |
| def lat_vs_iops(processed_results, lab_info, comment): |
| lat_iops = collections.defaultdict(lambda: []) |
| requsted_vs_real = collections.defaultdict(lambda: {}) |
| |
| for res in processed_results.values(): |
| if res.name.startswith('lat_vs_iops'): |
| lat_iops[res.concurence].append((res.lat.average / 1000.0, |
| res.lat.deviation / 1000.0, |
| res.iops.average, |
| res.iops.deviation)) |
| requested_iops = res.p.rate_iops * res.concurence |
| requsted_vs_real[res.concurence][requested_iops] = \ |
| (res.iops.average, res.iops.deviation) |
| |
| colors = ['red', 'green', 'blue', 'orange', 'magenta', "teal"] |
| colors_it = iter(colors) |
| for conc, lat_iops in sorted(lat_iops.items()): |
| lat, dev, iops, iops_dev = zip(*lat_iops) |
| plt.errorbar(iops, lat, xerr=iops_dev, yerr=dev, fmt='ro', |
| label=str(conc) + " threads", |
| color=next(colors_it)) |
| |
| plt.xlabel("IOPS") |
| plt.ylabel("Latency, ms") |
| plt.grid() |
| plt.legend(loc=0) |
| plt_iops_vs_lat = get_emb_data_svg(plt) |
| plt.clf() |
| |
| colors_it = iter(colors) |
| for conc, req_vs_real in sorted(requsted_vs_real.items()): |
| req, real = zip(*sorted(req_vs_real.items())) |
| iops, dev = zip(*real) |
| plt.errorbar(req, iops, yerr=dev, fmt='ro', |
| label=str(conc) + " threads", |
| color=next(colors_it)) |
| plt.xlabel("Requested IOPS") |
| plt.ylabel("Get IOPS") |
| plt.grid() |
| plt.legend(loc=0) |
| plt_iops_vs_requested = get_emb_data_svg(plt) |
| |
| res1 = processed_results.values()[0] |
| params_map = {'iops_vs_lat': plt_iops_vs_lat, |
| 'iops_vs_requested': plt_iops_vs_requested, |
| 'oper_descr': get_test_lcheck_params(res1).capitalize()} |
| |
| return get_template('report_iops_vs_lat.html').format(**params_map) |
| |
| |
| def render_all_html(comment, info, lab_description, images, templ_name): |
| data = info.__dict__.copy() |
| for name, val in data.items(): |
| if not name.startswith('__'): |
| if val is None: |
| data[name] = '-' |
| elif isinstance(val, (int, float, long)): |
| data[name] = round_3_digit(val) |
| |
| data['bw_read_max'] = (data['bw_read_max'][0] // 1024, |
| data['bw_read_max'][1]) |
| data['bw_write_max'] = (data['bw_write_max'][0] // 1024, |
| data['bw_write_max'][1]) |
| |
| images.update(data) |
| return get_template(templ_name).format(lab_info=lab_description, |
| comment=comment, |
| **images) |
| |
| |
| def io_chart(title, concurence, |
| latv, latv_min, latv_max, |
| iops_or_bw, iops_or_bw_err, |
| legend, log=False, |
| boxplots=False, |
| latv_50=None, latv_95=None): |
| points = " MiBps" if legend == 'BW' else "" |
| lc = len(concurence) |
| width = 0.35 |
| xt = range(1, lc + 1) |
| |
| op_per_vm = [v / (vm * th) for v, (vm, th) in zip(iops_or_bw, concurence)] |
| fig, p1 = plt.subplots() |
| xpos = [i - width / 2 for i in xt] |
| |
| p1.bar(xpos, iops_or_bw, |
| width=width, |
| yerr=iops_or_bw_err, |
| ecolor='m', |
| color='y', |
| label=legend) |
| |
| p1.grid(True) |
| p1.plot(xt, op_per_vm, '--', label=legend + "/thread", color='black') |
| handles1, labels1 = p1.get_legend_handles_labels() |
| |
| p2 = p1.twinx() |
| |
| if latv_50 is None: |
| p2.plot(xt, latv_max, label="lat max") |
| p2.plot(xt, latv, label="lat avg") |
| p2.plot(xt, latv_min, label="lat min") |
| else: |
| p2.plot(xt, latv_50, label="lat med") |
| p2.plot(xt, latv_95, label="lat 95%") |
| |
| plt.xlim(0.5, lc + 0.5) |
| plt.xticks(xt, ["{0} * {1}".format(vm, th) for (vm, th) in concurence]) |
| p1.set_xlabel("VM Count * Thread per VM") |
| p1.set_ylabel(legend + points) |
| p2.set_ylabel("Latency ms") |
| plt.title(title) |
| handles2, labels2 = p2.get_legend_handles_labels() |
| |
| plt.legend(handles1 + handles2, labels1 + labels2, |
| loc='center left', bbox_to_anchor=(1.1, 0.81)) |
| |
| if log: |
| p1.set_yscale('log') |
| p2.set_yscale('log') |
| plt.subplots_adjust(right=0.68) |
| |
| return get_emb_data_svg(plt) |
| |
| |
| def make_plots(processed_results, plots): |
| files = {} |
| for name_pref, fname, desc in plots: |
| chart_data = [] |
| |
| for res in processed_results.values(): |
| if res.name.startswith(name_pref): |
| chart_data.append(res) |
| |
| if len(chart_data) == 0: |
| raise ValueError("Can't found any date for " + name_pref) |
| |
| use_bw = ssize2b(chart_data[0].p.blocksize) > 16 * 1024 |
| |
| chart_data.sort(key=lambda x: x.concurence) |
| |
| # if x.lat.average < max_lat] |
| # lat = [x.lat.average / 1000 for x in chart_data] |
| # lat_min = [x.lat.min / 1000 for x in chart_data] |
| # lat_max = [x.lat.max / 1000 for x in chart_data] |
| lat = None |
| lat_min = None |
| lat_max = None |
| lat_50 = [x.lat_50 for x in chart_data] |
| lat_95 = [x.lat_95 for x in chart_data] |
| |
| testnodes_count = x.testnodes_count |
| concurence = [(testnodes_count, x.concurence) |
| for x in chart_data] |
| |
| if use_bw: |
| data = [x.bw.average / 1000 for x in chart_data] |
| data_dev = [x.bw.confidence / 1000 for x in chart_data] |
| name = "BW" |
| else: |
| data = [x.iops.average for x in chart_data] |
| data_dev = [x.iops.confidence for x in chart_data] |
| name = "IOPS" |
| |
| fc = io_chart(title=desc, |
| concurence=concurence, |
| latv=lat, latv_min=lat_min, latv_max=lat_max, |
| iops_or_bw=data, |
| iops_or_bw_err=data_dev, |
| legend=name, latv_50=lat_50, latv_95=lat_95) |
| files[fname] = fc |
| |
| return files |
| |
| |
| def find_max_where(processed_results, sync_mode, blocksize, rw, iops=True): |
| result = None |
| attr = 'iops' if iops else 'bw' |
| for measurement in processed_results.values(): |
| ok = measurement.sync_mode == sync_mode |
| ok = ok and (measurement.p.blocksize == blocksize) |
| ok = ok and (measurement.p.rw == rw) |
| |
| if ok: |
| field = getattr(measurement, attr) |
| |
| if result is None: |
| result = field |
| elif field.average > result.average: |
| result = field |
| |
| return result |
| |
| |
| def get_disk_info(processed_results): |
| di = DiskInfo() |
| di.direct_iops_w_max = find_max_where(processed_results, |
| 'd', '4k', 'randwrite') |
| di.direct_iops_r_max = find_max_where(processed_results, |
| 'd', '4k', 'randread') |
| |
| di.direct_iops_w64_max = find_max_where(processed_results, |
| 'd', '64k', 'randwrite') |
| |
| for sz in ('16m', '64m'): |
| di.bw_write_max = find_max_where(processed_results, |
| 'd', sz, 'randwrite', False) |
| if di.bw_write_max is not None: |
| break |
| |
| if di.bw_write_max is None: |
| di.bw_write_max = find_max_where(processed_results, |
| 'd', '1m', 'write', False) |
| |
| for sz in ('16m', '64m'): |
| di.bw_read_max = find_max_where(processed_results, |
| 'd', sz, 'randread', False) |
| if di.bw_read_max is not None: |
| break |
| |
| if di.bw_read_max is None: |
| di.bw_read_max = find_max_where(processed_results, |
| 'd', '1m', 'read', False) |
| |
| rws4k_iops_lat_th = [] |
| for res in processed_results.values(): |
| if res.sync_mode in 'xs' and res.p.blocksize == '4k': |
| if res.p.rw != 'randwrite': |
| continue |
| rws4k_iops_lat_th.append((res.iops.average, |
| res.lat.average, |
| res.concurence)) |
| |
| rws4k_iops_lat_th.sort(key=lambda (_1, _2, conc): conc) |
| |
| latv = [lat for _, lat, _ in rws4k_iops_lat_th] |
| |
| for tlatv_ms in [10, 30, 100]: |
| tlat = tlatv_ms * 1000 |
| pos = bisect.bisect_left(latv, tlat) |
| if 0 == pos: |
| setattr(di, 'rws4k_{}ms'.format(tlatv_ms), 0) |
| elif pos == len(latv): |
| iops3, _, _ = rws4k_iops_lat_th[-1] |
| setattr(di, 'rws4k_{}ms'.format(tlatv_ms), ">=" + str(iops3)) |
| else: |
| lat1 = latv[pos - 1] |
| lat2 = latv[pos] |
| |
| iops1, _, th1 = rws4k_iops_lat_th[pos - 1] |
| iops2, _, th2 = rws4k_iops_lat_th[pos] |
| |
| th_lat_coef = (th2 - th1) / (lat2 - lat1) |
| th3 = th_lat_coef * (tlat - lat1) + th1 |
| |
| th_iops_coef = (iops2 - iops1) / (th2 - th1) |
| iops3 = th_iops_coef * (th3 - th1) + iops1 |
| setattr(di, 'rws4k_{}ms'.format(tlatv_ms), int(iops3)) |
| |
| hdi = DiskInfo() |
| |
| def pp(x): |
| med, conf = x.rounded_average_conf() |
| conf_perc = int(float(conf) / med * 100) |
| return (med, conf_perc) |
| |
| hdi.direct_iops_r_max = pp(di.direct_iops_r_max) |
| |
| if di.direct_iops_w_max is not None: |
| hdi.direct_iops_w_max = pp(di.direct_iops_w_max) |
| else: |
| hdi.direct_iops_w_max = None |
| |
| if di.direct_iops_w64_max is not None: |
| hdi.direct_iops_w64_max = pp(di.direct_iops_w64_max) |
| else: |
| hdi.direct_iops_w64_max = None |
| |
| hdi.bw_write_max = pp(di.bw_write_max) |
| hdi.bw_read_max = pp(di.bw_read_max) |
| |
| hdi.rws4k_10ms = di.rws4k_10ms if 0 != di.rws4k_10ms else None |
| hdi.rws4k_30ms = di.rws4k_30ms if 0 != di.rws4k_30ms else None |
| hdi.rws4k_100ms = di.rws4k_100ms if 0 != di.rws4k_100ms else None |
| return hdi |
| |
| |
| @report('hdd', 'hdd') |
| def make_hdd_report(processed_results, lab_info, comment): |
| plots = [ |
| ('hdd_rrd4k', 'rand_read_4k', 'Random read 4k direct IOPS'), |
| ('hdd_rwx4k', 'rand_write_4k', 'Random write 4k sync IOPS') |
| ] |
| images = make_plots(processed_results, plots) |
| di = get_disk_info(processed_results) |
| return render_all_html(comment, di, lab_info, images, "report_hdd.html") |
| |
| |
| @report('cinder_iscsi', 'cinder_iscsi') |
| def make_cinder_iscsi_report(processed_results, lab_info, comment): |
| plots = [ |
| ('cinder_iscsi_rrd4k', 'rand_read_4k', 'Random read 4k direct IOPS'), |
| ('cinder_iscsi_rwx4k', 'rand_write_4k', 'Random write 4k sync IOPS') |
| ] |
| try: |
| images = make_plots(processed_results, plots) |
| except ValueError: |
| plots = [ |
| ('cinder_iscsi_rrd4k', 'rand_read_4k', 'Random read 4k direct IOPS'), |
| ('cinder_iscsi_rws4k', 'rand_write_4k', 'Random write 4k sync IOPS') |
| ] |
| images = make_plots(processed_results, plots) |
| di = get_disk_info(processed_results) |
| return render_all_html(comment, di, lab_info, images, "report_cinder_iscsi.html") |
| |
| |
| @report('ceph', 'ceph') |
| def make_ceph_report(processed_results, lab_info, comment): |
| plots = [ |
| ('ceph_rrd4k', 'rand_read_4k', 'Random read 4k direct IOPS'), |
| ('ceph_rws4k', 'rand_write_4k', 'Random write 4k sync IOPS'), |
| ('ceph_rrd16m', 'rand_read_16m', 'Random read 16m direct MiBps'), |
| ('ceph_rwd16m', 'rand_write_16m', |
| 'Random write 16m direct MiBps'), |
| ] |
| |
| images = make_plots(processed_results, plots) |
| di = get_disk_info(processed_results) |
| return render_all_html(comment, di, lab_info, images, "report_ceph.html") |
| |
| |
| def make_load_report(idx, results_dir, fname): |
| dpath = os.path.join(results_dir, "io_" + str(idx)) |
| files = sorted(os.listdir(dpath)) |
| gf = lambda x: "_".join(x.rsplit(".", 1)[0].split('_')[:3]) |
| |
| for key, group in itertools.groupby(files, gf): |
| fname = os.path.join(dpath, key + ".fio") |
| |
| cfgs = list(parse_all_in_1(open(fname).read(), fname)) |
| |
| fname = os.path.join(dpath, key + "_lat.log") |
| |
| curr = [] |
| arrays = [] |
| |
| with open(fname) as fd: |
| for offset, lat, _, _ in csv.reader(fd): |
| offset = int(offset) |
| lat = int(lat) |
| if len(curr) > 0 and curr[-1][0] > offset: |
| arrays.append(curr) |
| curr = [] |
| curr.append((offset, lat)) |
| arrays.append(curr) |
| conc = int(cfgs[0].vals.get('numjobs', 1)) |
| |
| if conc != 5: |
| continue |
| |
| assert len(arrays) == len(cfgs) * conc |
| |
| garrays = [[(0, 0)] for _ in range(conc)] |
| |
| for offset in range(len(cfgs)): |
| for acc, new_arr in zip(garrays, arrays[offset * conc:(offset + 1) * conc]): |
| last = acc[-1][0] |
| for off, lat in new_arr: |
| acc.append((off / 1000. + last, lat / 1000.)) |
| |
| for cfg, arr in zip(cfgs, garrays): |
| plt.plot(*zip(*arr[1:])) |
| plt.show() |
| exit(1) |
| |
| |
| def make_io_report(dinfo, comment, path, lab_info=None): |
| lab_info = { |
| "total_disk": "None", |
| "total_memory": "None", |
| "nodes_count": "None", |
| "processor_count": "None" |
| } |
| |
| try: |
| res_fields = sorted(v.name for v in dinfo.values()) |
| |
| found = False |
| for fields, name, func in report_funcs: |
| for field in fields: |
| pos = bisect.bisect_left(res_fields, field) |
| |
| if pos == len(res_fields): |
| break |
| |
| if not res_fields[pos].startswith(field): |
| break |
| else: |
| found = True |
| hpath = path.format(name) |
| |
| try: |
| report = func(dinfo, lab_info, comment) |
| except: |
| logger.exception("Diring {0} report generation".format(name)) |
| continue |
| |
| try: |
| with open(hpath, "w") as fd: |
| fd.write(report) |
| except: |
| logger.exception("Diring saving {0} report".format(name)) |
| continue |
| logger.info("Report {0} saved into {1}".format(name, hpath)) |
| |
| if not found: |
| logger.warning("No report generator found for this load") |
| |
| except Exception as exc: |
| import traceback |
| traceback.print_exc() |
| logger.error("Failed to generate html report:" + str(exc)) |