| import math |
| import itertools |
| from numpy.polynomial.chebyshev import chebfit, chebval |
| |
| |
| def med_dev(vals): |
| med = sum(vals) / len(vals) |
| dev = ((sum(abs(med - i) ** 2.0 for i in vals) / len(vals)) ** 0.5) |
| return med, dev |
| |
| |
| def round_deviation(med_dev): |
| med, dev = med_dev |
| |
| if dev < 1E-7: |
| return med_dev |
| |
| dev_div = 10.0 ** (math.floor(math.log10(dev)) - 1) |
| dev = int(dev / dev_div) * dev_div |
| med = int(med / dev_div) * dev_div |
| return (type(med_dev[0])(med), |
| type(med_dev[1])(dev)) |
| |
| |
| def groupby_globally(data, key_func): |
| grouped = {} |
| grouped_iter = itertools.groupby(data, key_func) |
| |
| for (bs, cache_tp, act, conc), curr_data_it in grouped_iter: |
| key = (bs, cache_tp, act, conc) |
| grouped.setdefault(key, []).extend(curr_data_it) |
| |
| return grouped |
| |
| |
| def approximate_curve(x, y, xnew, curved_coef): |
| """returns ynew - y values of some curve approximation""" |
| return chebval(xnew, chebfit(x, y, curved_coef)) |
| |
| |
| def approximate_line(x, y, xnew, relative_dist=False): |
| """returns ynew - y values of linear approximation""" |
| |
| |
| def difference(y, ynew): |
| """returns average and maximum relative and |
| absolute differences between y and ynew""" |
| |
| |
| def calculate_distribution_properties(data): |
| """chi, etc""" |
| |
| |
| def minimal_measurement_amount(data, max_diff, req_probability): |
| """ |
| should returns amount of measurements to get results (avg and deviation) |
| with error less, that max_diff in at least req_probability% cases |
| """ |