blob: bf8a585c21690318bb2d6b3c586e534bf8038a7a [file] [log] [blame]
import re
import json
from utils import ssize_to_b
from statistic import med_dev
def parse_output(out_err):
start_patt = r"(?ims)=+\s+RESULTS\(format=json\)\s+=+"
end_patt = r"(?ims)=+\s+END OF RESULTS\s+=+"
for block in re.split(start_patt, out_err)[1:]:
data, garbage = re.split(end_patt, block)
yield json.loads(data.strip())
start_patt = r"(?ims)=+\s+RESULTS\(format=eval\)\s+=+"
end_patt = r"(?ims)=+\s+END OF RESULTS\s+=+"
for block in re.split(start_patt, out_err)[1:]:
data, garbage = re.split(end_patt, block)
yield eval(data.strip())
def filter_data(name_prefix, fields_to_select, **filters):
def closure(data):
for result in data:
if name_prefix is not None:
if not result['jobname'].startswith(name_prefix):
continue
for k, v in filters.items():
if result.get(k) != v:
break
else:
yield map(result.get, fields_to_select)
return closure
def load_data(raw_data):
data = list(parse_output(raw_data))[0]
for key, val in data['res'].items():
val['blocksize_b'] = ssize_to_b(val['blocksize'])
val['iops_mediana'], val['iops_stddev'] = med_dev(val['iops'])
val['bw_mediana'], val['bw_stddev'] = med_dev(val['bw_mean'])
val['lat_mediana'], val['lat_stddev'] = med_dev(val['lat'])
yield val
def load_files(*fnames):
for fname in fnames:
for i in load_data(open(fname).read()):
yield i