blob: de2f86d2162b468d7af8d51b6cfe83a4fa273749 [file] [log] [blame]
import os
import json
import pprint
import logging
from typing import cast, Iterator, Tuple, Type, Optional, Any, Union, List
import numpy
from cephlib.wally_storage import WallyDB
from cephlib.sensor_storage import SensorStorage
from cephlib.statistic import StatProps
from cephlib.numeric_types import DataSource, TimeSeries
from cephlib.node import NodeInfo
from .suits.job import JobConfig
from .result_classes import SuiteConfig, IWallyStorage
from .utils import StopTestError
from .suits.all_suits import all_suits
from cephlib.storage import Storage
logger = logging.getLogger('wally')
def fill_path(path: str, **params) -> str:
for name, val in params.items():
if val is not None:
path = path.replace("{" + name + "}", val)
return path
class WallyStorage(IWallyStorage, SensorStorage):
def __init__(self, storage: Storage) -> None:
SensorStorage.__init__(self, storage, WallyDB)
def flush(self) -> None:
self.storage.flush()
# ------------- CHECK DATA IN STORAGE ----------------------------------------------------------------------------
def check_plot_file(self, source: DataSource) -> Optional[str]:
path = self.db_paths.plot.format(**source.__dict__)
fpath = self.storage.get_fname(self.db_paths.report_root + path)
return path if os.path.exists(fpath) else None
# ------------- PUT DATA INTO STORAGE --------------------------------------------------------------------------
def put_or_check_suite(self, suite: SuiteConfig) -> None:
path = self.db_paths.suite_cfg.format(suite_id=suite.storage_id)
if path in self.storage:
db_cfg = self.storage.load(SuiteConfig, path)
if db_cfg != suite:
logger.error("Current suite %s config is not equal to found in storage at %s", suite.test_type, path)
logger.debug("Current: \n%s\nStorage:\n%s", pprint.pformat(db_cfg), pprint.pformat(suite))
raise StopTestError()
else:
self.storage.put(suite, path)
def put_job(self, suite: SuiteConfig, job: JobConfig) -> None:
path = self.db_paths.job_cfg.format(suite_id=suite.storage_id, job_id=job.storage_id)
self.storage.put(job, path)
def put_extra(self, data: bytes, source: DataSource) -> None:
self.storage.put_raw(data, self.db_paths.ts.format(**source.__dict__))
def put_stat(self, data: StatProps, source: DataSource) -> None:
self.storage.put(data, self.db_paths.stat.format(**source.__dict__))
# return path to file to be inserted into report
def put_plot_file(self, data: bytes, source: DataSource) -> str:
path = self.db_paths.plot.format(**source.__dict__)
self.storage.put_raw(data, self.db_paths.report_root + path)
return path
def put_report(self, report: str, name: str) -> str:
return self.storage.put_raw(report.encode(self.csv_file_encoding), self.db_paths.report_root + name)
def put_txt_report(self, suite: SuiteConfig, report: str) -> None:
path = self.db_paths.txt_report.format(suite_id=suite.storage_id)
self.storage.put_raw(report.encode('utf8'), path)
def put_job_info(self, suite: SuiteConfig, job: JobConfig, key: str, data: Any) -> None:
path = self.db_paths.job_extra.format(suite_id=suite.storage_id, job_id=job.storage_id, name=key)
if isinstance(data, bytes):
self.storage.put_raw(data, path)
else:
self.storage.put(data, path)
# ------------- GET DATA FROM STORAGE --------------------------------------------------------------------------
def get_stat(self, stat_cls: Type[StatProps], source: DataSource) -> StatProps:
return self.storage.load(stat_cls, self.db_paths.stat.format(**source.__dict__))
def get_txt_report(self, suite: SuiteConfig) -> Optional[str]:
path = self.db_paths.txt_report.format(suite_id=suite.storage_id)
if path in self.storage:
return self.storage.get_raw(path).decode('utf8')
return None
def get_job_info(self, suite: SuiteConfig, job: JobConfig, key: str) -> Any:
path = self.db_paths.job_extra.format(suite_id=suite.storage_id, job_id=job.storage_id, name=key)
return self.storage.get(path, None)
# ------------- ITER OVER STORAGE ------------------------------------------------------------------------------
def iter_suite(self, suite_type: str = None) -> Iterator[SuiteConfig]:
for is_file, suite_info_path, groups in self.iter_paths(self.db_paths.suite_cfg_r):
assert is_file
suite = self.storage.load(SuiteConfig, suite_info_path)
assert suite.storage_id == groups['suite_id']
if not suite_type or suite.test_type == suite_type:
yield suite
def iter_job(self, suite: SuiteConfig) -> Iterator[JobConfig]:
job_glob = fill_path(self.db_paths.job_cfg_r, suite_id=suite.storage_id)
job_config_cls = all_suits[suite.test_type].job_config_cls
for is_file, path, groups in self.iter_paths(job_glob):
assert is_file
job = cast(JobConfig, self.storage.load(job_config_cls, path))
assert job.storage_id == groups['job_id']
yield job
def load_nodes(self) -> List[NodeInfo]:
try:
return self.storage.other_caches['wally']['nodes']
except KeyError:
nodes = self.storage.load_list(NodeInfo, WallyDB.all_nodes)
if WallyDB.nodes_params in self.storage:
params = json.loads(self.storage.get_raw(WallyDB.nodes_params).decode('utf8'))
for node in nodes:
node.params = params.get(node.node_id, {})
self.storage.other_caches['wally']['nodes'] = nodes
return nodes
# ----------------- TS ------------------------------------------------------------------------------------------
def get_ts(self, ds: DataSource) -> TimeSeries:
path = self.db_paths.ts.format_map(ds.__dict__)
(units, time_units), header2, content = self.storage.get_array(path)
times = content[:,0].copy()
data = content[:,1:]
if data.shape[1] == 1:
data.shape = (data.shape[0],)
return TimeSeries(data=data, times=times, source=ds, units=units, time_units=time_units, histo_bins=header2)
def put_ts(self, ts: TimeSeries) -> None:
assert ts.data.dtype == ts.times.dtype, "Data type {!r} != time type {!r}".format(ts.data.dtype, ts.times.dtype)
assert ts.data.dtype.kind == 'u', "Only unsigned ints are accepted"
assert ts.source.tag == self.ts_arr_tag, \
"Incorrect source tag == {!r}, must be {!r}".format(ts.source.tag, self.ts_arr_tag)
if ts.source.metric == 'lat':
assert len(ts.data.shape) == 2, "Latency should be 2d array"
assert ts.histo_bins is not None, "Latency should have histo_bins field not empty"
csv_path = self.db_paths.ts.format_map(ts.source.__dict__)
header = [ts.units, ts.time_units]
tv = ts.times.view().reshape((-1, 1))
if len(ts.data.shape) == 1:
dv = ts.data.view().reshape((ts.times.shape[0], -1))
else:
dv = ts.data
result = numpy.concatenate((tv, dv), axis=1)
self.storage.put_array(csv_path, result, header, header2=ts.histo_bins, append_on_exists=False)
def iter_ts(self, **ds_parts: str) -> Iterator[DataSource]:
return self.iter_objs(self.db_paths.ts_r, **ds_parts)