blob: 39b9d996f6f54fb0cee67b1cb1b49c93e60c0967 [file] [log] [blame]
import sys
import time
from copy import deepcopy
import numpy
import scipy.optimize as scp
import matplotlib.pyplot as plt
import io_py_result_processor as io_test
key_pos = {'blocksize': 0, 'direct': 1, 'name': 2}
actions = ['randwrite', 'randread', 'read', 'write']
types = ['s', 'd']
colors = ['red', 'green', 'blue', 'cyan',
'magenta', 'black', 'yellow', 'burlywood']
def get_key(x, no):
""" x = (), no = key_pos key """
keys = deepcopy(key_pos)
del keys[no]
key = [x[n] for n in keys.values()]
return tuple(key), x[key_pos[no]]
def generate_groups(data, group_id):
""" select data for plot by group_id
data - processed_series"""
grouped = {}
for key, val in data.items():
new_key, group_val = get_key(key, group_id)
group = grouped.setdefault(new_key, {})
group[group_val] = val
return grouped
def gen_dots(val):
"""Generate dots from real data
val = dict (x:y)
return ox, oy lists """
oy = []
ox = []
for x in sorted(val.keys()):
ox.append(int(x[:-1]))
if val[x][0] != 0:
oy.append(1.0/val[x][0])
else:
oy.append(0)
return ox, oy
def gen_line_numpy(x, y):
A = numpy.vstack([x, numpy.ones(len(x))]).T
coef = numpy.linalg.lstsq(A, y)[0]
funcLine = lambda tpl, x: tpl[0] * x + tpl[1]
print coef
return x, funcLine(coef, x)
def gen_line_scipy(x, y):
funcLine = lambda tpl, x: tpl[0] * x + tpl[1]
ErrorFunc = lambda tpl, x, y: 1.0 - y/funcLine(tpl, x)
tplInitial = (1.0, 0.0)
# print x, y
tplFinal, success = scp.leastsq(ErrorFunc, tplInitial[:], args=(x, y),
diag=(1./x.mean(), 1./y.mean()))
if success not in range(1, 4):
raise ValueError("No line for this dots")
xx = numpy.linspace(x.min(), x.max(), 50)
print tplFinal
# print x, ErrorFunc(tplFinal, x, y)
return xx, funcLine(tplFinal, xx)
def gen_app_plot(key, val, plot, color):
""" Plots with fake line and real dots around"""
ox, oy = gen_dots(val)
name = "_".join(str(k) for k in key)
if len(ox) < 2:
# skip single dots
return False
# create approximation
x = numpy.array(ox)#numpy.log(ox))
y = numpy.array(oy)#numpy.log(oy))
print x, y
try:
print name
x1, y1 = gen_line_scipy(x, y)
plot.plot(x1, y1, color=color)
#
#plot.loglog(x1, y1, color=color)
except ValueError:
# just don't draw it - it's ok
# we'll see no appr and bad dots
# not return False, because we need see dots
pass
plot.plot(x, y, '^', label=name, markersize=7, color=color)
#plot.loglog(x, y, '^', label=name, markersize=7, color=color)
return True
def save_plot(key, val):
""" one plot from one dict item with value list"""
ox, oy = gen_dots(val)
name = "_".join(str(k) for k in key)
plt.plot(ox, oy, label=name)
def plot_generation(fname, group_by):
""" plots for value group_by in imgs by actions"""
data = list(io_test.load_io_py_file(fname))
item = io_test.Data("hdr")
for key, vals in io_test.groupby_globally(data, io_test.key_func).items():
item.series[key] = [val['iops'] for val in vals]
io_test.process_inplace(item)
pr_data = generate_groups(item.processed_series, group_by)
print pr_data
#fig = plt.figure()
plot = plt.subplot(111)
for action in actions:
for tp in types:
color = 0
hasPlot = False
for key, val in pr_data.items():
if action in key and tp in key:
ok = gen_app_plot(key, val, plot, colors[color])
hasPlot = hasPlot or ok
color += 1
# use it for just connect dots
#save_plot(key, val)
if hasPlot:
# Shrink current axis by 10%
box = plot.get_position()
plot.set_position([box.x0, box.y0 + box.height * 0.1,
box.width, box.height * 0.9])
# Put a legend to the bottom
plot.legend(loc='lower center', bbox_to_anchor=(0.5, -0.25),
fancybox=True, shadow=True, ncol=4,
fontsize='xx-small')
plt.title("Plot for %s on %s" % (group_by, action))
plt.ylabel("time")
plt.xlabel(group_by)
plt.grid()
# use it if want scale plot somehow
# plt.axis([0.0, 5000.0, 0.0, 64.0])
name = "%s__%s_%s.png" % (group_by, action, tp)
plt.savefig(name, format='png', dpi=100)
plt.clf()
plot = plt.subplot(111)
color = 0
def deviation_on_deviation(groups_list, data):
""" calc deviation of data all and by selection groups"""
total_dev = io_test.round_deviation(io_test.med_dev(data))
grouped_dev = [total_dev]
for group in groups_list:
beg = 0
end = group
local_dev = []
while end <= len(data):
local_dev.append(io_test.round_deviation(io_test.med_dev(data[beg:end]))[0])
beg += group
end += group
grouped_dev.append(io_test.round_deviation(io_test.med_dev(local_dev)))
return grouped_dev
def deviation_generation(fname, groups_list):
""" Print deviation by groups for data from fname """
CONC_POS = key_pos['concurence']
int_list = [int(i) for i in groups_list]
data = list(io_test.load_io_py_file(fname))
item = io_test.Data("hdr")
for key, vals in io_test.groupby_globally(data, io_test.key_func).items():
item.series[key] = [val['iops'] * key[CONC_POS] for val in vals]
print deviation_on_deviation(int_list, item.series[key])
def main(argv):
if argv[1] == "plot":
plot_generation(argv[2], argv[3])
elif argv[1] == "dev":
deviation_generation(argv[2], argv[3:])
if __name__ == "__main__":
exit(main(sys.argv))