blob: d2bef7e381ab9bb0f7bc2144a283e498dda3e802 [file] [log] [blame]
import os
import csv
import bisect
import logging
import itertools
import collections
from io import StringIO
from typing import Dict, Any, Iterator, Tuple, cast
try:
import numpy
import scipy
import matplotlib
matplotlib.use('svg')
import matplotlib.pyplot as plt
except ImportError:
plt = None
import wally
from .utils import ssize2b
from .statistic import round_3_digit
from .storage import Storage
from .stage import Stage, StepOrder
from .test_run_class import TestRun
from .result_classes import TestInfo, FullTestResult, SensorInfo
from .suits.io.fio_task_parser import (get_test_sync_mode,
get_test_summary,
parse_all_in_1,
abbv_name_to_full)
logger = logging.getLogger("wally")
def load_test_results(storage: Storage) -> Iterator[FullTestResult]:
sensors_data = {} # type: Dict[Tuple[str, str, str], SensorInfo]
mstorage = storage.sub_storage("metric")
for _, node_id in mstorage.list():
for _, dev_name in mstorage.list(node_id):
for _, sensor_name in mstorage.list(node_id, dev_name):
key = (node_id, dev_name, sensor_name)
si = SensorInfo(*key)
si.begin_time, si.end_time, si.data = storage[node_id, dev_name, sensor_name] # type: ignore
sensors_data[key] = si
rstorage = storage.sub_storage("result")
for _, run_id in rstorage.list():
ftr = FullTestResult()
ftr.test_info = rstorage.load(TestInfo, run_id, "info")
ftr.performance_data = {}
p1 = "{}/measurement".format(run_id)
for _, node_id in rstorage.list(p1):
for _, measurement_name in rstorage.list(p1, node_id):
perf_key = (node_id, measurement_name)
ftr.performance_data[perf_key] = rstorage["{}/{}/{}".format(p1, *perf_key)] # type: ignore
yield ftr
class ConsoleReportStage(Stage):
priority = StepOrder.REPORT
def run(self, ctx: TestRun) -> None:
# TODO(koder): load data from storage
raise NotImplementedError("...")
class HtmlReportStage(Stage):
priority = StepOrder.REPORT
def run(self, ctx: TestRun) -> None:
# TODO(koder): load data from storage
raise NotImplementedError("...")
# class StoragePerfInfo:
# def __init__(self, name: str, summary: Any, params, testnodes_count) -> None:
# self.direct_iops_r_max = 0 # type: int
# self.direct_iops_w_max = 0 # type: int
#
# # 64 used instead of 4k to faster feed caches
# self.direct_iops_w64_max = 0 # type: int
#
# self.rws4k_10ms = 0 # type: int
# self.rws4k_30ms = 0 # type: int
# self.rws4k_100ms = 0 # type: int
# self.bw_write_max = 0 # type: int
# self.bw_read_max = 0 # type: int
#
# self.bw = None #
# self.iops = None
# self.lat = None
# self.lat_50 = None
# self.lat_95 = None
#
#
# # disk_info = None
# # base = None
# # linearity = None
#
#
# def group_by_name(test_data):
# name_map = collections.defaultdict(lambda: [])
#
# for data in test_data:
# name_map[(data.name, data.summary())].append(data)
#
# return name_map
#
#
# def report(name, required_fields):
# def closure(func):
# report_funcs.append((required_fields.split(","), name, func))
# return func
# return closure
#
#
# def get_test_lcheck_params(pinfo):
# res = [{
# 's': 'sync',
# 'd': 'direct',
# 'a': 'async',
# 'x': 'sync direct'
# }[pinfo.sync_mode]]
#
# res.append(pinfo.p.rw)
#
# return " ".join(res)
#
#
# def get_emb_data_svg(plt):
# sio = StringIO()
# plt.savefig(sio, format='svg')
# img_start = "<!-- Created with matplotlib (http://matplotlib.org/) -->"
# return sio.getvalue().split(img_start, 1)[1]
#
#
# def get_template(templ_name):
# very_root_dir = os.path.dirname(os.path.dirname(wally.__file__))
# templ_dir = os.path.join(very_root_dir, 'report_templates')
# templ_file = os.path.join(templ_dir, templ_name)
# return open(templ_file, 'r').read()
#
#
# def group_by(data, func):
# if len(data) < 2:
# yield data
# return
#
# ndata = [(func(dt), dt) for dt in data]
# ndata.sort(key=func)
# pkey, dt = ndata[0]
# curr_list = [dt]
#
# for key, val in ndata[1:]:
# if pkey != key:
# yield curr_list
# curr_list = [val]
# else:
# curr_list.append(val)
# pkey = key
#
# yield curr_list
#
#
# @report('linearity', 'linearity_test')
# def linearity_report(processed_results, lab_info, comment):
# labels_and_data_mp = collections.defaultdict(lambda: [])
# vls = {}
#
# # plot io_time = func(bsize)
# for res in processed_results.values():
# if res.name.startswith('linearity_test'):
# iotimes = [1000. / val for val in res.iops.raw]
#
# op_summ = get_test_summary(res.params)[:3]
#
# labels_and_data_mp[op_summ].append(
# [res.p.blocksize, res.iops.raw, iotimes])
#
# cvls = res.params.vals.copy()
# del cvls['blocksize']
# del cvls['rw']
#
# cvls.pop('sync', None)
# cvls.pop('direct', None)
# cvls.pop('buffered', None)
#
# if op_summ not in vls:
# vls[op_summ] = cvls
# else:
# assert cvls == vls[op_summ]
#
# all_labels = None
# _, ax1 = plt.subplots()
# for name, labels_and_data in labels_and_data_mp.items():
# labels_and_data.sort(key=lambda x: ssize2b(x[0]))
#
# labels, _, iotimes = zip(*labels_and_data)
#
# if all_labels is None:
# all_labels = labels
# else:
# assert all_labels == labels
#
# plt.boxplot(iotimes)
# if len(labels_and_data) > 2 and \
# ssize2b(labels_and_data[-2][0]) >= 4096:
#
# xt = range(1, len(labels) + 1)
#
# def io_time(sz, bw, initial_lat):
# return sz / bw + initial_lat
#
# x = numpy.array(map(ssize2b, labels))
# y = numpy.array([sum(dt) / len(dt) for dt in iotimes])
# popt, _ = scipy.optimize.curve_fit(io_time, x, y, p0=(100., 1.))
#
# y1 = io_time(x, *popt)
# plt.plot(xt, y1, linestyle='--',
# label=name + ' LS linear approx')
#
# for idx, (sz, _, _) in enumerate(labels_and_data):
# if ssize2b(sz) >= 4096:
# break
#
# bw = (x[-1] - x[idx]) / (y[-1] - y[idx])
# lat = y[-1] - x[-1] / bw
# y2 = io_time(x, bw, lat)
# plt.plot(xt, y2, linestyle='--',
# label=abbv_name_to_full(name) +
# ' (4k & max) linear approx')
#
# plt.setp(ax1, xticklabels=labels)
#
# plt.xlabel("Block size")
# plt.ylabel("IO time, ms")
#
# plt.subplots_adjust(top=0.85)
# plt.legend(bbox_to_anchor=(0.5, 1.15),
# loc='upper center',
# prop={'size': 10}, ncol=2)
# plt.grid()
# iotime_plot = get_emb_data_svg(plt)
# plt.clf()
#
# # plot IOPS = func(bsize)
# _, ax1 = plt.subplots()
#
# for name, labels_and_data in labels_and_data_mp.items():
# labels_and_data.sort(key=lambda x: ssize2b(x[0]))
# _, data, _ = zip(*labels_and_data)
# plt.boxplot(data)
# avg = [float(sum(arr)) / len(arr) for arr in data]
# xt = range(1, len(data) + 1)
# plt.plot(xt, avg, linestyle='--',
# label=abbv_name_to_full(name) + " avg")
#
# plt.setp(ax1, xticklabels=labels)
# plt.xlabel("Block size")
# plt.ylabel("IOPS")
# plt.legend(bbox_to_anchor=(0.5, 1.15),
# loc='upper center',
# prop={'size': 10}, ncol=2)
# plt.grid()
# plt.subplots_adjust(top=0.85)
#
# iops_plot = get_emb_data_svg(plt)
#
# res = set(get_test_lcheck_params(res) for res in processed_results.values())
# ncount = list(set(res.testnodes_count for res in processed_results.values()))
# conc = list(set(res.concurence for res in processed_results.values()))
#
# assert len(conc) == 1
# assert len(ncount) == 1
#
# descr = {
# 'vm_count': ncount[0],
# 'concurence': conc[0],
# 'oper_descr': ", ".join(res).capitalize()
# }
#
# params_map = {'iotime_vs_size': iotime_plot,
# 'iops_vs_size': iops_plot,
# 'descr': descr}
#
# return get_template('report_linearity.html').format(**params_map)
#
#
# @report('lat_vs_iops', 'lat_vs_iops')
# def lat_vs_iops(processed_results, lab_info, comment):
# lat_iops = collections.defaultdict(lambda: [])
# requsted_vs_real = collections.defaultdict(lambda: {})
#
# for res in processed_results.values():
# if res.name.startswith('lat_vs_iops'):
# lat_iops[res.concurence].append((res.lat,
# 0,
# res.iops.average,
# res.iops.deviation))
# # lat_iops[res.concurence].append((res.lat.average / 1000.0,
# # res.lat.deviation / 1000.0,
# # res.iops.average,
# # res.iops.deviation))
# requested_iops = res.p.rate_iops * res.concurence
# requsted_vs_real[res.concurence][requested_iops] = \
# (res.iops.average, res.iops.deviation)
#
# colors = ['red', 'green', 'blue', 'orange', 'magenta', "teal"]
# colors_it = iter(colors)
# for conc, lat_iops in sorted(lat_iops.items()):
# lat, dev, iops, iops_dev = zip(*lat_iops)
# plt.errorbar(iops, lat, xerr=iops_dev, yerr=dev, fmt='ro',
# label=str(conc) + " threads",
# color=next(colors_it))
#
# plt.xlabel("IOPS")
# plt.ylabel("Latency, ms")
# plt.grid()
# plt.legend(loc=0)
# plt_iops_vs_lat = get_emb_data_svg(plt)
# plt.clf()
#
# colors_it = iter(colors)
# for conc, req_vs_real in sorted(requsted_vs_real.items()):
# req, real = zip(*sorted(req_vs_real.items()))
# iops, dev = zip(*real)
# plt.errorbar(req, iops, yerr=dev, fmt='ro',
# label=str(conc) + " threads",
# color=next(colors_it))
# plt.xlabel("Requested IOPS")
# plt.ylabel("Get IOPS")
# plt.grid()
# plt.legend(loc=0)
# plt_iops_vs_requested = get_emb_data_svg(plt)
#
# res1 = processed_results.values()[0]
# params_map = {'iops_vs_lat': plt_iops_vs_lat,
# 'iops_vs_requested': plt_iops_vs_requested,
# 'oper_descr': get_test_lcheck_params(res1).capitalize()}
#
# return get_template('report_iops_vs_lat.html').format(**params_map)
#
#
# def render_all_html(comment, info, lab_description, images, templ_name):
# data = info.__dict__.copy()
# for name, val in data.items():
# if not name.startswith('__'):
# if val is None:
# if name in ('direct_iops_w64_max', 'direct_iops_w_max'):
# data[name] = ('-', '-', '-')
# else:
# data[name] = '-'
# elif isinstance(val, (int, float, long)):
# data[name] = round_3_digit(val)
#
# data['bw_read_max'] = (data['bw_read_max'][0] // 1024,
# data['bw_read_max'][1],
# data['bw_read_max'][2])
#
# data['bw_write_max'] = (data['bw_write_max'][0] // 1024,
# data['bw_write_max'][1],
# data['bw_write_max'][2])
#
# images.update(data)
# templ = get_template(templ_name)
# return templ.format(lab_info=lab_description,
# comment=comment,
# **images)
#
#
# def io_chart(title, concurence,
# latv, latv_min, latv_max,
# iops_or_bw, iops_or_bw_err,
# legend,
# log_iops=False,
# log_lat=False,
# boxplots=False,
# latv_50=None,
# latv_95=None,
# error2=None):
#
# matplotlib.rcParams.update({'font.size': 10})
# points = " MiBps" if legend == 'BW' else ""
# lc = len(concurence)
# width = 0.35
# xt = range(1, lc + 1)
#
# op_per_vm = [v / (vm * th) for v, (vm, th) in zip(iops_or_bw, concurence)]
# fig, p1 = plt.subplots()
# xpos = [i - width / 2 for i in xt]
#
# p1.bar(xpos, iops_or_bw,
# width=width,
# color='y',
# label=legend)
#
# err1_leg = None
# for pos, y, err in zip(xpos, iops_or_bw, iops_or_bw_err):
# err1_leg = p1.errorbar(pos + width / 2,
# y,
# err,
# color='magenta')
#
# err2_leg = None
# if error2 is not None:
# for pos, y, err in zip(xpos, iops_or_bw, error2):
# err2_leg = p1.errorbar(pos + width / 2 + 0.08,
# y,
# err,
# lw=2,
# alpha=0.5,
# color='teal')
#
# p1.grid(True)
# p1.plot(xt, op_per_vm, '--', label=legend + "/thread", color='black')
# handles1, labels1 = p1.get_legend_handles_labels()
#
# handles1 += [err1_leg]
# labels1 += ["95% conf"]
#
# if err2_leg is not None:
# handles1 += [err2_leg]
# labels1 += ["95% dev"]
#
# p2 = p1.twinx()
#
# if latv_50 is None:
# p2.plot(xt, latv_max, label="lat max")
# p2.plot(xt, latv, label="lat avg")
# p2.plot(xt, latv_min, label="lat min")
# else:
# p2.plot(xt, latv_50, label="lat med")
# p2.plot(xt, latv_95, label="lat 95%")
#
# plt.xlim(0.5, lc + 0.5)
# plt.xticks(xt, ["{0} * {1}".format(vm, th) for (vm, th) in concurence])
# p1.set_xlabel("VM Count * Thread per VM")
# p1.set_ylabel(legend + points)
# p2.set_ylabel("Latency ms")
# plt.title(title)
# handles2, labels2 = p2.get_legend_handles_labels()
#
# plt.legend(handles1 + handles2, labels1 + labels2,
# loc='center left', bbox_to_anchor=(1.1, 0.81))
#
# if log_iops:
# p1.set_yscale('log')
#
# if log_lat:
# p2.set_yscale('log')
#
# plt.subplots_adjust(right=0.68)
#
# return get_emb_data_svg(plt)
#
#
# def make_plots(processed_results, plots):
# """
# processed_results: [PerfInfo]
# plots = [(test_name_prefix:str, fname:str, description:str)]
# """
# files = {}
# for name_pref, fname, desc in plots:
# chart_data = []
#
# for res in processed_results:
# summ = res.name + "_" + res.summary
# if summ.startswith(name_pref):
# chart_data.append(res)
#
# if len(chart_data) == 0:
# raise ValueError("Can't found any date for " + name_pref)
#
# use_bw = ssize2b(chart_data[0].p.blocksize) > 16 * 1024
#
# chart_data.sort(key=lambda x: x.params['vals']['numjobs'])
#
# lat = None
# lat_min = None
# lat_max = None
#
# lat_50 = [x.lat_50 for x in chart_data]
# lat_95 = [x.lat_95 for x in chart_data]
#
# lat_diff_max = max(x.lat_95 / x.lat_50 for x in chart_data)
# lat_log_scale = (lat_diff_max > 10)
#
# testnodes_count = x.testnodes_count
# concurence = [(testnodes_count, x.concurence)
# for x in chart_data]
#
# if use_bw:
# data = [x.bw.average / 1000 for x in chart_data]
# data_conf = [x.bw.confidence / 1000 for x in chart_data]
# data_dev = [x.bw.deviation * 2.5 / 1000 for x in chart_data]
# name = "BW"
# else:
# data = [x.iops.average for x in chart_data]
# data_conf = [x.iops.confidence for x in chart_data]
# data_dev = [x.iops.deviation * 2 for x in chart_data]
# name = "IOPS"
#
# fc = io_chart(title=desc,
# concurence=concurence,
#
# latv=lat,
# latv_min=lat_min,
# latv_max=lat_max,
#
# iops_or_bw=data,
# iops_or_bw_err=data_conf,
#
# legend=name,
# log_lat=lat_log_scale,
#
# latv_50=lat_50,
# latv_95=lat_95,
#
# error2=data_dev)
# files[fname] = fc
#
# return files
#
#
# def find_max_where(processed_results, sync_mode, blocksize, rw, iops=True):
# result = None
# attr = 'iops' if iops else 'bw'
# for measurement in processed_results:
# ok = measurement.sync_mode == sync_mode
# ok = ok and (measurement.p.blocksize == blocksize)
# ok = ok and (measurement.p.rw == rw)
#
# if ok:
# field = getattr(measurement, attr)
#
# if result is None:
# result = field
# elif field.average > result.average:
# result = field
#
# return result
#
#
# def get_disk_info(processed_results):
# di = DiskInfo()
# di.direct_iops_w_max = find_max_where(processed_results,
# 'd', '4k', 'randwrite')
# di.direct_iops_r_max = find_max_where(processed_results,
# 'd', '4k', 'randread')
#
# di.direct_iops_w64_max = find_max_where(processed_results,
# 'd', '64k', 'randwrite')
#
# for sz in ('16m', '64m'):
# di.bw_write_max = find_max_where(processed_results,
# 'd', sz, 'randwrite', False)
# if di.bw_write_max is not None:
# break
#
# if di.bw_write_max is None:
# for sz in ('1m', '2m', '4m', '8m'):
# di.bw_write_max = find_max_where(processed_results,
# 'd', sz, 'write', False)
# if di.bw_write_max is not None:
# break
#
# for sz in ('16m', '64m'):
# di.bw_read_max = find_max_where(processed_results,
# 'd', sz, 'randread', False)
# if di.bw_read_max is not None:
# break
#
# if di.bw_read_max is None:
# di.bw_read_max = find_max_where(processed_results,
# 'd', '1m', 'read', False)
#
# rws4k_iops_lat_th = []
# for res in processed_results:
# if res.sync_mode in 'xs' and res.p.blocksize == '4k':
# if res.p.rw != 'randwrite':
# continue
# rws4k_iops_lat_th.append((res.iops.average,
# res.lat,
# # res.lat.average,
# res.concurence))
#
# rws4k_iops_lat_th.sort(key=lambda x: x[2])
#
# latv = [lat for _, lat, _ in rws4k_iops_lat_th]
#
# for tlat in [10, 30, 100]:
# pos = bisect.bisect_left(latv, tlat)
# if 0 == pos:
# setattr(di, 'rws4k_{}ms'.format(tlat), 0)
# elif pos == len(latv):
# iops3, _, _ = rws4k_iops_lat_th[-1]
# iops3 = int(round_3_digit(iops3))
# setattr(di, 'rws4k_{}ms'.format(tlat), ">=" + str(iops3))
# else:
# lat1 = latv[pos - 1]
# lat2 = latv[pos]
#
# iops1, _, th1 = rws4k_iops_lat_th[pos - 1]
# iops2, _, th2 = rws4k_iops_lat_th[pos]
#
# th_lat_coef = (th2 - th1) / (lat2 - lat1)
# th3 = th_lat_coef * (tlat - lat1) + th1
#
# th_iops_coef = (iops2 - iops1) / (th2 - th1)
# iops3 = th_iops_coef * (th3 - th1) + iops1
# iops3 = int(round_3_digit(iops3))
# setattr(di, 'rws4k_{}ms'.format(tlat), iops3)
#
# hdi = DiskInfo()
#
# def pp(x):
# med, conf = x.rounded_average_conf()
# conf_perc = int(float(conf) / med * 100)
# dev_perc = int(float(x.deviation) / med * 100)
# return (round_3_digit(med), conf_perc, dev_perc)
#
# hdi.direct_iops_r_max = pp(di.direct_iops_r_max)
#
# if di.direct_iops_w_max is not None:
# hdi.direct_iops_w_max = pp(di.direct_iops_w_max)
# else:
# hdi.direct_iops_w_max = None
#
# if di.direct_iops_w64_max is not None:
# hdi.direct_iops_w64_max = pp(di.direct_iops_w64_max)
# else:
# hdi.direct_iops_w64_max = None
#
# hdi.bw_write_max = pp(di.bw_write_max)
# hdi.bw_read_max = pp(di.bw_read_max)
#
# hdi.rws4k_10ms = di.rws4k_10ms if 0 != di.rws4k_10ms else None
# hdi.rws4k_30ms = di.rws4k_30ms if 0 != di.rws4k_30ms else None
# hdi.rws4k_100ms = di.rws4k_100ms if 0 != di.rws4k_100ms else None
# return hdi
#
#
# @report('hdd', 'hdd')
# def make_hdd_report(processed_results, lab_info, comment):
# plots = [
# ('hdd_rrd4k', 'rand_read_4k', 'Random read 4k direct IOPS'),
# ('hdd_rwx4k', 'rand_write_4k', 'Random write 4k sync IOPS')
# ]
# perf_infos = [res.disk_perf_info() for res in processed_results]
# images = make_plots(perf_infos, plots)
# di = get_disk_info(perf_infos)
# return render_all_html(comment, di, lab_info, images, "report_hdd.html")
#
#
# @report('cinder_iscsi', 'cinder_iscsi')
# def make_cinder_iscsi_report(processed_results, lab_info, comment):
# plots = [
# ('cinder_iscsi_rrd4k', 'rand_read_4k', 'Random read 4k direct IOPS'),
# ('cinder_iscsi_rwx4k', 'rand_write_4k', 'Random write 4k sync IOPS')
# ]
# perf_infos = [res.disk_perf_info() for res in processed_results]
# try:
# images = make_plots(perf_infos, plots)
# except ValueError:
# plots = [
# ('cinder_iscsi_rrd4k', 'rand_read_4k', 'Random read 4k direct IOPS'),
# ('cinder_iscsi_rws4k', 'rand_write_4k', 'Random write 4k sync IOPS')
# ]
# images = make_plots(perf_infos, plots)
# di = get_disk_info(perf_infos)
#
# return render_all_html(comment, di, lab_info, images, "report_cinder_iscsi.html")
#
#
# @report('ceph', 'ceph')
# def make_ceph_report(processed_results, lab_info, comment):
# plots = [
# ('ceph_rrd4k', 'rand_read_4k', 'Random read 4k direct IOPS'),
# ('ceph_rws4k', 'rand_write_4k', 'Random write 4k sync IOPS'),
# ('ceph_rrd16m', 'rand_read_16m', 'Random read 16m direct MiBps'),
# ('ceph_rwd16m', 'rand_write_16m',
# 'Random write 16m direct MiBps'),
# ]
#
# perf_infos = [res.disk_perf_info() for res in processed_results]
# images = make_plots(perf_infos, plots)
# di = get_disk_info(perf_infos)
# return render_all_html(comment, di, lab_info, images, "report_ceph.html")
#
#
# @report('mixed', 'mixed')
# def make_mixed_report(processed_results, lab_info, comment):
# #
# # IOPS(X% read) = 100 / ( X / IOPS_W + (100 - X) / IOPS_R )
# #
#
# perf_infos = [res.disk_perf_info() for res in processed_results]
# mixed = collections.defaultdict(lambda: [])
#
# is_ssd = False
# for res in perf_infos:
# if res.name.startswith('mixed'):
# if res.name.startswith('mixed-ssd'):
# is_ssd = True
# mixed[res.concurence].append((res.p.rwmixread,
# res.lat,
# 0,
# # res.lat.average / 1000.0,
# # res.lat.deviation / 1000.0,
# res.iops.average,
# res.iops.deviation))
#
# if len(mixed) == 0:
# raise ValueError("No mixed load found")
#
# fig, p1 = plt.subplots()
# p2 = p1.twinx()
#
# colors = ['red', 'green', 'blue', 'orange', 'magenta', "teal"]
# colors_it = iter(colors)
# for conc, mix_lat_iops in sorted(mixed.items()):
# mix_lat_iops = sorted(mix_lat_iops)
# read_perc, lat, dev, iops, iops_dev = zip(*mix_lat_iops)
# p1.errorbar(read_perc, iops, color=next(colors_it),
# yerr=iops_dev, label=str(conc) + " th")
#
# p2.errorbar(read_perc, lat, color=next(colors_it),
# ls='--', yerr=dev, label=str(conc) + " th lat")
#
# if is_ssd:
# p1.set_yscale('log')
# p2.set_yscale('log')
#
# p1.set_xlim(-5, 105)
#
# read_perc = set(read_perc)
# read_perc.add(0)
# read_perc.add(100)
# read_perc = sorted(read_perc)
#
# plt.xticks(read_perc, map(str, read_perc))
#
# p1.grid(True)
# p1.set_xlabel("% of reads")
# p1.set_ylabel("Mixed IOPS")
# p2.set_ylabel("Latency, ms")
#
# handles1, labels1 = p1.get_legend_handles_labels()
# handles2, labels2 = p2.get_legend_handles_labels()
# plt.subplots_adjust(top=0.85)
# plt.legend(handles1 + handles2, labels1 + labels2,
# bbox_to_anchor=(0.5, 1.15),
# loc='upper center',
# prop={'size': 12}, ncol=3)
# plt.show()
#
#
# def make_load_report(idx, results_dir, fname):
# dpath = os.path.join(results_dir, "io_" + str(idx))
# files = sorted(os.listdir(dpath))
# gf = lambda x: "_".join(x.rsplit(".", 1)[0].split('_')[:3])
#
# for key, group in itertools.groupby(files, gf):
# fname = os.path.join(dpath, key + ".fio")
#
# cfgs = list(parse_all_in_1(open(fname).read(), fname))
#
# fname = os.path.join(dpath, key + "_lat.log")
#
# curr = []
# arrays = []
#
# with open(fname) as fd:
# for offset, lat, _, _ in csv.reader(fd):
# offset = int(offset)
# lat = int(lat)
# if len(curr) > 0 and curr[-1][0] > offset:
# arrays.append(curr)
# curr = []
# curr.append((offset, lat))
# arrays.append(curr)
# conc = int(cfgs[0].vals.get('numjobs', 1))
#
# if conc != 5:
# continue
#
# assert len(arrays) == len(cfgs) * conc
#
# garrays = [[(0, 0)] for _ in range(conc)]
#
# for offset in range(len(cfgs)):
# for acc, new_arr in zip(garrays, arrays[offset * conc:(offset + 1) * conc]):
# last = acc[-1][0]
# for off, lat in new_arr:
# acc.append((off / 1000. + last, lat / 1000.))
#
# for cfg, arr in zip(cfgs, garrays):
# plt.plot(*zip(*arr[1:]))
# plt.show()
# exit(1)
#
#
# def make_io_report(dinfo, comment, path, lab_info=None):
# lab_info = {
# "total_disk": "None",
# "total_memory": "None",
# "nodes_count": "None",
# "processor_count": "None"
# }
#
# try:
# res_fields = sorted(v.name for v in dinfo)
#
# found = False
# for fields, name, func in report_funcs:
# for field in fields:
# pos = bisect.bisect_left(res_fields, field)
#
# if pos == len(res_fields):
# break
#
# if not res_fields[pos].startswith(field):
# break
# else:
# found = True
# hpath = path.format(name)
#
# try:
# report = func(dinfo, lab_info, comment)
# except:
# logger.exception("Diring {0} report generation".format(name))
# continue
#
# if report is not None:
# try:
# with open(hpath, "w") as fd:
# fd.write(report)
# except:
# logger.exception("Diring saving {0} report".format(name))
# continue
# logger.info("Report {0} saved into {1}".format(name, hpath))
# else:
# logger.warning("No report produced by {0!r}".format(name))
#
# if not found:
# logger.warning("No report generator found for this load")
#
# except Exception as exc:
# import traceback
# traceback.print_exc()
# logger.error("Failed to generate html report:" + str(exc))
#
#
# # @classmethod
# # def prepare_data(cls, results) -> List[Dict[str, Any]]:
# # """create a table with io performance report for console"""
# #
# # def key_func(data: FioRunResult) -> Tuple[str, str, str, str, int]:
# # tpl = data.summary_tpl()
# # return (data.name,
# # tpl.oper,
# # tpl.mode,
# # ssize2b(tpl.bsize),
# # int(tpl.th_count) * int(tpl.vm_count))
# # res = []
# #
# # for item in sorted(results, key=key_func):
# # test_dinfo = item.disk_perf_info()
# # testnodes_count = len(item.config.nodes)
# #
# # iops, _ = test_dinfo.iops.rounded_average_conf()
# #
# # if test_dinfo.iops_sys is not None:
# # iops_sys, iops_sys_conf = test_dinfo.iops_sys.rounded_average_conf()
# # _, iops_sys_dev = test_dinfo.iops_sys.rounded_average_dev()
# # iops_sys_per_vm = round_3_digit(iops_sys / testnodes_count)
# # iops_sys = round_3_digit(iops_sys)
# # else:
# # iops_sys = None
# # iops_sys_per_vm = None
# # iops_sys_dev = None
# # iops_sys_conf = None
# #
# # bw, bw_conf = test_dinfo.bw.rounded_average_conf()
# # _, bw_dev = test_dinfo.bw.rounded_average_dev()
# # conf_perc = int(round(bw_conf * 100 / bw))
# # dev_perc = int(round(bw_dev * 100 / bw))
# #
# # lat_50 = round_3_digit(int(test_dinfo.lat_50))
# # lat_95 = round_3_digit(int(test_dinfo.lat_95))
# # lat_avg = round_3_digit(int(test_dinfo.lat_avg))
# #
# # iops_per_vm = round_3_digit(iops / testnodes_count)
# # bw_per_vm = round_3_digit(bw / testnodes_count)
# #
# # iops = round_3_digit(iops)
# # bw = round_3_digit(bw)
# #
# # summ = "{0.oper}{0.mode} {0.bsize:>4} {0.th_count:>3}th {0.vm_count:>2}vm".format(item.summary_tpl())
# #
# # res.append({"name": key_func(item)[0],
# # "key": key_func(item)[:4],
# # "summ": summ,
# # "iops": int(iops),
# # "bw": int(bw),
# # "conf": str(conf_perc),
# # "dev": str(dev_perc),
# # "iops_per_vm": int(iops_per_vm),
# # "bw_per_vm": int(bw_per_vm),
# # "lat_50": lat_50,
# # "lat_95": lat_95,
# # "lat_avg": lat_avg,
# #
# # "iops_sys": iops_sys,
# # "iops_sys_per_vm": iops_sys_per_vm,
# # "sys_conf": iops_sys_conf,
# # "sys_dev": iops_sys_dev})
# #
# # return res
# #
# # Field = collections.namedtuple("Field", ("header", "attr", "allign", "size"))
# # fiels_and_header = [
# # Field("Name", "name", "l", 7),
# # Field("Description", "summ", "l", 19),
# # Field("IOPS\ncum", "iops", "r", 3),
# # # Field("IOPS_sys\ncum", "iops_sys", "r", 3),
# # Field("KiBps\ncum", "bw", "r", 6),
# # Field("Cnf %\n95%", "conf", "r", 3),
# # Field("Dev%", "dev", "r", 3),
# # Field("iops\n/vm", "iops_per_vm", "r", 3),
# # Field("KiBps\n/vm", "bw_per_vm", "r", 6),
# # Field("lat ms\nmedian", "lat_50", "r", 3),
# # Field("lat ms\n95%", "lat_95", "r", 3),
# # Field("lat\navg", "lat_avg", "r", 3),
# # ]
# #
# # fiels_and_header_dct = dict((item.attr, item) for item in fiels_and_header)
# #
# # @classmethod
# # def format_for_console(cls, results) -> str:
# # """create a table with io performance report for console"""
# #
# # tab = texttable.Texttable(max_width=120)
# # tab.set_deco(tab.HEADER | tab.VLINES | tab.BORDER)
# # tab.set_cols_align([f.allign for f in cls.fiels_and_header])
# # sep = ["-" * f.size for f in cls.fiels_and_header]
# # tab.header([f.header for f in cls.fiels_and_header])
# # prev_k = None
# # for item in cls.prepare_data(results):
# # if prev_k is not None:
# # if prev_k != item["key"]:
# # tab.add_row(sep)
# #
# # prev_k = item["key"]
# # tab.add_row([item[f.attr] for f in cls.fiels_and_header])
# #
# # return tab.draw()
# #
# # @classmethod
# # def format_diff_for_console(cls, list_of_results: List[Any]) -> str:
# # """create a table with io performance report for console"""
# #
# # tab = texttable.Texttable(max_width=200)
# # tab.set_deco(tab.HEADER | tab.VLINES | tab.BORDER)
# #
# # header = [
# # cls.fiels_and_header_dct["name"].header,
# # cls.fiels_and_header_dct["summ"].header,
# # ]
# # allign = ["l", "l"]
# #
# # header.append("IOPS ~ Cnf% ~ Dev%")
# # allign.extend(["r"] * len(list_of_results))
# # header.extend(
# # "IOPS_{0} %".format(i + 2) for i in range(len(list_of_results[1:]))
# # )
# #
# # header.append("BW")
# # allign.extend(["r"] * len(list_of_results))
# # header.extend(
# # "BW_{0} %".format(i + 2) for i in range(len(list_of_results[1:]))
# # )
# #
# # header.append("LAT")
# # allign.extend(["r"] * len(list_of_results))
# # header.extend(
# # "LAT_{0}".format(i + 2) for i in range(len(list_of_results[1:]))
# # )
# #
# # tab.header(header)
# # sep = ["-" * 3] * len(header)
# # processed_results = map(cls.prepare_data, list_of_results)
# #
# # key2results = []
# # for res in processed_results:
# # key2results.append(dict(
# # ((item["name"], item["summ"]), item) for item in res
# # ))
# #
# # prev_k = None
# # iops_frmt = "{0[iops]} ~ {0[conf]:>2} ~ {0[dev]:>2}"
# # for item in processed_results[0]:
# # if prev_k is not None:
# # if prev_k != item["key"]:
# # tab.add_row(sep)
# #
# # prev_k = item["key"]
# #
# # key = (item['name'], item['summ'])
# # line = list(key)
# # base = key2results[0][key]
# #
# # line.append(iops_frmt.format(base))
# #
# # for test_results in key2results[1:]:
# # val = test_results.get(key)
# # if val is None:
# # line.append("-")
# # elif base['iops'] == 0:
# # line.append("Nan")
# # else:
# # prc_val = {'dev': val['dev'], 'conf': val['conf']}
# # prc_val['iops'] = int(100 * val['iops'] / base['iops'])
# # line.append(iops_frmt.format(prc_val))
# #
# # line.append(base['bw'])
# #
# # for test_results in key2results[1:]:
# # val = test_results.get(key)
# # if val is None:
# # line.append("-")
# # elif base['bw'] == 0:
# # line.append("Nan")
# # else:
# # line.append(int(100 * val['bw'] / base['bw']))
# #
# # for test_results in key2results:
# # val = test_results.get(key)
# # if val is None:
# # line.append("-")
# # else:
# # line.append("{0[lat_50]} - {0[lat_95]}".format(val))
# #
# # tab.add_row(line)
# #
# # tab.set_cols_align(allign)
# # return tab.draw()
#
#
# # READ_IOPS_DISCSTAT_POS = 3
# # WRITE_IOPS_DISCSTAT_POS = 7
# #
# #
# # def load_sys_log_file(ftype: str, fname: str) -> TimeSeriesValue:
# # assert ftype == 'iops'
# # pval = None
# # with open(fname) as fd:
# # iops = []
# # for ln in fd:
# # params = ln.split()
# # cval = int(params[WRITE_IOPS_DISCSTAT_POS]) + \
# # int(params[READ_IOPS_DISCSTAT_POS])
# # if pval is not None:
# # iops.append(cval - pval)
# # pval = cval
# #
# # vals = [(idx * 1000, val) for idx, val in enumerate(iops)]
# # return TimeSeriesValue(vals)
# #
# #
# # def load_test_results(folder: str, run_num: int) -> 'FioRunResult':
# # res = {}
# # params = None
# #
# # fn = os.path.join(folder, str(run_num) + '_params.yaml')
# # params = yaml.load(open(fn).read())
# #
# # conn_ids_set = set()
# # rr = r"{}_(?P<conn_id>.*?)_(?P<type>[^_.]*)\.\d+\.log$".format(run_num)
# # for fname in os.listdir(folder):
# # rm = re.match(rr, fname)
# # if rm is None:
# # continue
# #
# # conn_id_s = rm.group('conn_id')
# # conn_id = conn_id_s.replace('_', ':')
# # ftype = rm.group('type')
# #
# # if ftype not in ('iops', 'bw', 'lat'):
# # continue
# #
# # ts = load_fio_log_file(os.path.join(folder, fname))
# # res.setdefault(ftype, {}).setdefault(conn_id, []).append(ts)
# #
# # conn_ids_set.add(conn_id)
# #
# # rr = r"{}_(?P<conn_id>.*?)_(?P<type>[^_.]*)\.sys\.log$".format(run_num)
# # for fname in os.listdir(folder):
# # rm = re.match(rr, fname)
# # if rm is None:
# # continue
# #
# # conn_id_s = rm.group('conn_id')
# # conn_id = conn_id_s.replace('_', ':')
# # ftype = rm.group('type')
# #
# # if ftype not in ('iops', 'bw', 'lat'):
# # continue
# #
# # ts = load_sys_log_file(ftype, os.path.join(folder, fname))
# # res.setdefault(ftype + ":sys", {}).setdefault(conn_id, []).append(ts)
# #
# # conn_ids_set.add(conn_id)
# #
# # mm_res = {}
# #
# # if len(res) == 0:
# # raise ValueError("No data was found")
# #
# # for key, data in res.items():
# # conn_ids = sorted(conn_ids_set)
# # awail_ids = [conn_id for conn_id in conn_ids if conn_id in data]
# # matr = [data[conn_id] for conn_id in awail_ids]
# # mm_res[key] = MeasurementMatrix(matr, awail_ids)
# #
# # raw_res = {}
# # for conn_id in conn_ids:
# # fn = os.path.join(folder, "{0}_{1}_rawres.json".format(run_num, conn_id_s))
# #
# # # remove message hack
# # fc = "{" + open(fn).read().split('{', 1)[1]
# # raw_res[conn_id] = json.loads(fc)
# #
# # fio_task = FioJobSection(params['name'])
# # fio_task.vals.update(params['vals'])
# #
# # config = TestConfig('io', params, None, params['nodes'], folder, None)
# # return FioRunResult(config, fio_task, mm_res, raw_res, params['intervals'], run_num)
# #
#
# # class DiskPerfInfo:
# # def __init__(self, name: str, summary: str, params: Dict[str, Any], testnodes_count: int) -> None:
# # self.name = name
# # self.bw = None
# # self.iops = None
# # self.lat = None
# # self.lat_50 = None
# # self.lat_95 = None
# # self.lat_avg = None
# #
# # self.raw_bw = []
# # self.raw_iops = []
# # self.raw_lat = []
# #
# # self.params = params
# # self.testnodes_count = testnodes_count
# # self.summary = summary
# #
# # self.sync_mode = get_test_sync_mode(self.params['vals'])
# # self.concurence = self.params['vals'].get('numjobs', 1)
# #
# #
# # class IOTestResults:
# # def __init__(self, suite_name: str, fio_results: 'FioRunResult', log_directory: str):
# # self.suite_name = suite_name
# # self.fio_results = fio_results
# # self.log_directory = log_directory
# #
# # def __iter__(self):
# # return iter(self.fio_results)
# #
# # def __len__(self):
# # return len(self.fio_results)
# #
# # def get_yamable(self) -> Dict[str, List[str]]:
# # items = [(fio_res.summary(), fio_res.idx) for fio_res in self]
# # return {self.suite_name: [self.log_directory] + items}
#
#
# # class FioRunResult(TestResults):
# # """
# # Fio run results
# # config: TestConfig
# # fio_task: FioJobSection
# # ts_results: {str: MeasurementMatrix[TimeSeriesValue]}
# # raw_result: ????
# # run_interval:(float, float) - test tun time, used for sensors
# # """
# # def __init__(self, config, fio_task, ts_results, raw_result, run_interval, idx):
# #
# # self.name = fio_task.name.rsplit("_", 1)[0]
# # self.fio_task = fio_task
# # self.idx = idx
# #
# # self.bw = ts_results['bw']
# # self.lat = ts_results['lat']
# # self.iops = ts_results['iops']
# #
# # if 'iops:sys' in ts_results:
# # self.iops_sys = ts_results['iops:sys']
# # else:
# # self.iops_sys = None
# #
# # res = {"bw": self.bw,
# # "lat": self.lat,
# # "iops": self.iops,
# # "iops:sys": self.iops_sys}
# #
# # self.sensors_data = None
# # self._pinfo = None
# # TestResults.__init__(self, config, res, raw_result, run_interval)
# #
# # def get_params_from_fio_report(self):
# # nodes = self.bw.connections_ids
# #
# # iops = [self.raw_result[node]['jobs'][0]['mixed']['iops'] for node in nodes]
# # total_ios = [self.raw_result[node]['jobs'][0]['mixed']['total_ios'] for node in nodes]
# # runtime = [self.raw_result[node]['jobs'][0]['mixed']['runtime'] / 1000 for node in nodes]
# # flt_iops = [float(ios) / rtime for ios, rtime in zip(total_ios, runtime)]
# #
# # bw = [self.raw_result[node]['jobs'][0]['mixed']['bw'] for node in nodes]
# # total_bytes = [self.raw_result[node]['jobs'][0]['mixed']['io_bytes'] for node in nodes]
# # flt_bw = [float(tbytes) / rtime for tbytes, rtime in zip(total_bytes, runtime)]
# #
# # return {'iops': iops,
# # 'flt_iops': flt_iops,
# # 'bw': bw,
# # 'flt_bw': flt_bw}
# #
# # def summary(self):
# # return get_test_summary(self.fio_task, len(self.config.nodes))
# #
# # def summary_tpl(self):
# # return get_test_summary_tuple(self.fio_task, len(self.config.nodes))
# #
# # def get_lat_perc_50_95_multy(self):
# # lat_mks = collections.defaultdict(lambda: 0)
# # num_res = 0
# #
# # for result in self.raw_result.values():
# # num_res += len(result['jobs'])
# # for job_info in result['jobs']:
# # for k, v in job_info['latency_ms'].items():
# # if isinstance(k, basestring) and k.startswith('>='):
# # lat_mks[int(k[2:]) * 1000] += v
# # else:
# # lat_mks[int(k) * 1000] += v
# #
# # for k, v in job_info['latency_us'].items():
# # lat_mks[int(k)] += v
# #
# # for k, v in lat_mks.items():
# # lat_mks[k] = float(v) / num_res
# # return get_lat_perc_50_95(lat_mks)
# #
# # def disk_perf_info(self, avg_interval=2.0):
# #
# # if self._pinfo is not None:
# # return self._pinfo
# #
# # testnodes_count = len(self.config.nodes)
# #
# # pinfo = DiskPerfInfo(self.name,
# # self.summary(),
# # self.params,
# # testnodes_count)
# #
# # def prepare(data, drop=1):
# # if data is None:
# # return data
# #
# # res = []
# # for ts_data in data:
# # if ts_data.average_interval() < avg_interval:
# # ts_data = ts_data.derived(avg_interval)
# #
# # # drop last value on bounds
# # # as they may contains ranges without activities
# # assert len(ts_data.values) >= drop + 1, str(drop) + " " + str(ts_data.values)
# #
# # if drop > 0:
# # res.append(ts_data.values[:-drop])
# # else:
# # res.append(ts_data.values)
# #
# # return res
# #
# # def agg_data(matr):
# # arr = sum(matr, [])
# # min_len = min(map(len, arr))
# # res = []
# # for idx in range(min_len):
# # res.append(sum(dt[idx] for dt in arr))
# # return res
# #
# # pinfo.raw_lat = map(prepare, self.lat.per_vm())
# # num_th = sum(map(len, pinfo.raw_lat))
# # lat_avg = [val / num_th for val in agg_data(pinfo.raw_lat)]
# # pinfo.lat_avg = data_property(lat_avg).average / 1000 # us to ms
# #
# # pinfo.lat_50, pinfo.lat_95 = self.get_lat_perc_50_95_multy()
# # pinfo.lat = pinfo.lat_50
# #
# # pinfo.raw_bw = map(prepare, self.bw.per_vm())
# # pinfo.raw_iops = map(prepare, self.iops.per_vm())
# #
# # if self.iops_sys is not None:
# # pinfo.raw_iops_sys = map(prepare, self.iops_sys.per_vm())
# # pinfo.iops_sys = data_property(agg_data(pinfo.raw_iops_sys))
# # else:
# # pinfo.raw_iops_sys = None
# # pinfo.iops_sys = None
# #
# # fparams = self.get_params_from_fio_report()
# # fio_report_bw = sum(fparams['flt_bw'])
# # fio_report_iops = sum(fparams['flt_iops'])
# #
# # agg_bw = agg_data(pinfo.raw_bw)
# # agg_iops = agg_data(pinfo.raw_iops)
# #
# # log_bw_avg = average(agg_bw)
# # log_iops_avg = average(agg_iops)
# #
# # # update values to match average from fio report
# # coef_iops = fio_report_iops / float(log_iops_avg)
# # coef_bw = fio_report_bw / float(log_bw_avg)
# #
# # bw_log = data_property([val * coef_bw for val in agg_bw])
# # iops_log = data_property([val * coef_iops for val in agg_iops])
# #
# # bw_report = data_property([fio_report_bw])
# # iops_report = data_property([fio_report_iops])
# #
# # # When IOPS/BW per thread is too low
# # # data from logs is rounded to match
# # iops_per_th = sum(sum(pinfo.raw_iops, []), [])
# # if average(iops_per_th) > 10:
# # pinfo.iops = iops_log
# # pinfo.iops2 = iops_report
# # else:
# # pinfo.iops = iops_report
# # pinfo.iops2 = iops_log
# #
# # bw_per_th = sum(sum(pinfo.raw_bw, []), [])
# # if average(bw_per_th) > 10:
# # pinfo.bw = bw_log
# # pinfo.bw2 = bw_report
# # else:
# # pinfo.bw = bw_report
# # pinfo.bw2 = bw_log
# #
# # self._pinfo = pinfo
# #
# # return pinfo
#
# # class TestResult:
# # """Hold all information for a given test - test info,
# # sensors data and performance results for test period from all nodes"""
# # run_id = None # type: int
# # test_info = None # type: Any
# # begin_time = None # type: int
# # end_time = None # type: int
# # sensors = None # Dict[Tuple[str, str, str], TimeSeries]
# # performance = None # Dict[Tuple[str, str], TimeSeries]
# #
# # class TestResults:
# # """
# # this class describe test results
# #
# # config:TestConfig - test config object
# # params:dict - parameters from yaml file for this test
# # results:{str:MeasurementMesh} - test results object
# # raw_result:Any - opaque object to store raw results
# # run_interval:(float, float) - test tun time, used for sensors
# # """
# #
# # def __init__(self,
# # config: TestConfig,
# # results: Dict[str, Any],
# # raw_result: Any,
# # run_interval: Tuple[float, float]) -> None:
# # self.config = config
# # self.params = config.params
# # self.results = results
# # self.raw_result = raw_result
# # self.run_interval = run_interval
# #
# # def __str__(self) -> str:
# # res = "{0}({1}):\n results:\n".format(
# # self.__class__.__name__,
# # self.summary())
# #
# # for name, val in self.results.items():
# # res += " {0}={1}\n".format(name, val)
# #
# # res += " params:\n"
# #
# # for name, val in self.params.items():
# # res += " {0}={1}\n".format(name, val)
# #
# # return res
# #
# # def summary(self) -> str:
# # raise NotImplementedError()
# # return ""
# #
# # def get_yamable(self) -> Any:
# # raise NotImplementedError()
# # return None
#
#
#
# # class MeasurementMatrix:
# # """
# # data:[[MeasurementResult]] - VM_COUNT x TH_COUNT matrix of MeasurementResult
# # """
# # def __init__(self, data, connections_ids):
# # self.data = data
# # self.connections_ids = connections_ids
# #
# # def per_vm(self):
# # return self.data
# #
# # def per_th(self):
# # return sum(self.data, [])
#
#
# # class MeasurementResults:
# # data = None # type: List[Any]
# #
# # def stat(self) -> StatProps:
# # return data_property(self.data)
# #
# # def __str__(self) -> str:
# # return 'TS([' + ", ".join(map(str, self.data)) + '])'
# #
# #
# # class SimpleVals(MeasurementResults):
# # """
# # data:[float] - list of values
# # """
# # def __init__(self, data: List[float]) -> None:
# # self.data = data
# #
# #
# # class TimeSeriesValue(MeasurementResults):
# # """
# # data:[(float, float, float)] - list of (start_time, lenght, average_value_for_interval)
# # odata: original values
# # """
# # def __init__(self, data: List[Tuple[float, float]]) -> None:
# # assert len(data) > 0
# # self.odata = data[:]
# # self.data = [] # type: List[Tuple[float, float, float]]
# #
# # cstart = 0.0
# # for nstart, nval in data:
# # self.data.append((cstart, nstart - cstart, nval))
# # cstart = nstart
# #
# # @property
# # def values(self) -> List[float]:
# # return [val[2] for val in self.data]
# #
# # def average_interval(self) -> float:
# # return float(sum([val[1] for val in self.data])) / len(self.data)
# #
# # def skip(self, seconds) -> 'TimeSeriesValue':
# # nres = []
# # for start, ln, val in self.data:
# # nstart = start + ln - seconds
# # if nstart > 0:
# # nres.append([nstart, val])
# # return self.__class__(nres)
# #
# # def derived(self, tdelta) -> 'TimeSeriesValue':
# # end = self.data[-1][0] + self.data[-1][1]
# # tdelta = float(tdelta)
# #
# # ln = end / tdelta
# #
# # if ln - int(ln) > 0:
# # ln += 1
# #
# # res = [[tdelta * i, 0.0] for i in range(int(ln))]
# #
# # for start, lenght, val in self.data:
# # start_idx = int(start / tdelta)
# # end_idx = int((start + lenght) / tdelta)
# #
# # for idx in range(start_idx, end_idx + 1):
# # rstart = tdelta * idx
# # rend = tdelta * (idx + 1)
# #
# # intersection_ln = min(rend, start + lenght) - max(start, rstart)
# # if intersection_ln > 0:
# # try:
# # res[idx][1] += val * intersection_ln / tdelta
# # except IndexError:
# # raise
# #
# # return self.__class__(res)
#
#
# def console_report_stage(ctx: TestRun) -> None:
# # TODO(koder): load data from storage
# raise NotImplementedError("...")
# # first_report = True
# # text_rep_fname = ctx.config.text_report_file
# #
# # with open(text_rep_fname, "w") as fd:
# # for tp, data in ctx.results.items():
# # if 'io' == tp and data is not None:
# # rep_lst = []
# # for result in data:
# # rep_lst.append(
# # IOPerfTest.format_for_console(list(result)))
# # rep = "\n\n".join(rep_lst)
# # elif tp in ['mysql', 'pgbench'] and data is not None:
# # rep = MysqlTest.format_for_console(data)
# # elif tp == 'omg':
# # rep = OmgTest.format_for_console(data)
# # else:
# # logger.warning("Can't generate text report for " + tp)
# # continue
# #
# # fd.write(rep)
# # fd.write("\n")
# #
# # if first_report:
# # logger.info("Text report were stored in " + text_rep_fname)
# # first_report = False
# #
# # print("\n" + rep + "\n")
#
#
# # def test_load_report_stage(cfg: Config, ctx: TestRun) -> None:
# # load_rep_fname = cfg.load_report_file
# # found = False
# # for idx, (tp, data) in enumerate(ctx.results.items()):
# # if 'io' == tp and data is not None:
# # if found:
# # logger.error("Making reports for more than one " +
# # "io block isn't supported! All " +
# # "report, except first are skipped")
# # continue
# # found = True
# # report.make_load_report(idx, cfg['results'], load_rep_fname)
# #
# #
#
# # def html_report_stage(ctx: TestRun) -> None:
# # TODO(koder): load data from storage
# # raise NotImplementedError("...")
# # html_rep_fname = cfg.html_report_file
# # found = False
# # for tp, data in ctx.results.items():
# # if 'io' == tp and data is not None:
# # if found or len(data) > 1:
# # logger.error("Making reports for more than one " +
# # "io block isn't supported! All " +
# # "report, except first are skipped")
# # continue
# # found = True
# # report.make_io_report(list(data[0]),
# # cfg.get('comment', ''),
# # html_rep_fname,
# # lab_info=ctx.nodes)
#
# #
# # def load_data_from_path(test_res_dir: str) -> Mapping[str, List[Any]]:
# # files = get_test_files(test_res_dir)
# # raw_res = yaml_load(open(files['raw_results']).read())
# # res = collections.defaultdict(list)
# #
# # for tp, test_lists in raw_res:
# # for tests in test_lists:
# # for suite_name, suite_data in tests.items():
# # result_folder = suite_data[0]
# # res[tp].append(TOOL_TYPE_MAPPER[tp].load(suite_name, result_folder))
# #
# # return res
# #
# #
# # def load_data_from_path_stage(var_dir: str, _, ctx: TestRun) -> None:
# # for tp, vals in load_data_from_path(var_dir).items():
# # ctx.results.setdefault(tp, []).extend(vals)
# #
# #
# # def load_data_from(var_dir: str) -> Callable[[TestRun], None]:
# # return functools.partial(load_data_from_path_stage, var_dir)