blob: eeffefc0c10b5c60a59dbcfb20677465e6cb3b55 [file] [log] [blame]
import os
import math
import bisect
import logging
try:
import matplotlib.pyplot as plt
except ImportError:
plt = None
import wally
from wally import charts
from wally.utils import parse_creds, ssize_to_b
from wally.statistic import round_3_digit, round_deviation
from wally.suits.io.results_loader import process_disk_info
from wally.meta_info import total_lab_info, collect_lab_data
logger = logging.getLogger("wally.report")
class DiskInfo(object):
def __init__(self):
self.direct_iops_r_max = 0
self.direct_iops_w_max = 0
self.rws4k_10ms = 0
self.rws4k_30ms = 0
self.rws4k_100ms = 0
self.bw_write_max = 0
self.bw_read_max = 0
report_funcs = []
def report(name, required_fields):
def closure(func):
report_funcs.append((required_fields.split(","), name, func))
return func
return closure
def linearity_report(processed_results, path, lab_info):
names = {}
for tp1 in ('rand', 'seq'):
for oper in ('read', 'write'):
for sync in ('sync', 'direct', 'async'):
sq = (tp1, oper, sync)
name = "{0} {1} {2}".format(*sq)
names["".join(word[0] for word in sq)] = name
colors = ['red', 'green', 'blue', 'cyan',
'magenta', 'black', 'yellow', 'burlywood']
markers = ['*', '^', 'x', 'o', '+', '.']
color = 0
marker = 0
plot_data = {}
name_pref = 'linearity_test_rrd'
for res in processed_results.values():
if res.name.startswith(name_pref):
iotime = 1000000. / res.iops
iotime_max = iotime * (1 + res.dev * 3)
bsize = ssize_to_b(res.raw['blocksize'])
plot_data[bsize] = (iotime, iotime_max)
min_sz = min(plot_data)
min_iotime, _ = plot_data.pop(min_sz)
x = []
y = []
e = []
for k, (v, vmax) in sorted(plot_data.items()):
# y.append(math.log10(v - min_iotime))
# x.append(math.log10(k))
# e.append(y[-1] - math.log10(vmax - min_iotime))
y.append(v - min_iotime)
x.append(k)
e.append(y[-1] - (vmax - min_iotime))
print e
tp = 'rrd'
plt.errorbar(x, y, e, linestyle='None', label=names[tp],
color=colors[color], ecolor="black",
marker=markers[marker])
plt.yscale('log')
plt.xscale('log')
plt.show()
# ynew = approximate_line(ax, ay, ax, True)
# plt.plot(ax, ynew, color=colors[color])
# color += 1
# marker += 1
# plt.legend(loc=2)
# plt.title("Linearity test by %i dots" % (len(vals)))
if plt:
linearity_report = report('linearity', 'linearity_test')(linearity_report)
def render_hdd_html(dest, info, lab_description):
very_root_dir = os.path.dirname(os.path.dirname(wally.__file__))
templ_dir = os.path.join(very_root_dir, 'report_templates')
templ_file = os.path.join(templ_dir, "report_hdd.html")
templ = open(templ_file, 'r').read()
for name, val in info.__dict__.items():
if not name.startswith('__'):
if val is None:
info.__dict__[name] = '-'
else:
info.__dict__[name] = round_3_digit(val)
data = info.__dict__.copy()
for k, v in data.items():
if v is None:
data[k] = "-"
report = templ.format(lab_info=lab_description, **data)
open(dest, 'w').write(report)
def render_ceph_html(dest, info, lab_description):
very_root_dir = os.path.dirname(os.path.dirname(wally.__file__))
templ_dir = os.path.join(very_root_dir, 'report_templates')
templ_file = os.path.join(templ_dir, "report_ceph.html")
templ = open(templ_file, 'r').read()
for name, val in info.__dict__.items():
if not name.startswith('__') and isinstance(val, (int, long, float)):
setattr(info, name, round_3_digit(val))
data = info.__dict__.copy()
for k, v in data.items():
if v is None:
data[k] = "-"
report = templ.format(lab_info=lab_description, **data)
open(dest, 'w').write(report)
def io_chart(title, concurence, latv, iops_or_bw, iops_or_bw_dev,
legend, fname):
bar_data, bar_dev = iops_or_bw, iops_or_bw_dev
legend = [legend]
iops_or_bw_per_vm = []
for i in range(len(concurence)):
iops_or_bw_per_vm.append(iops_or_bw[i] / concurence[i])
bar_dev_bottom = []
bar_dev_top = []
for i in range(len(bar_data)):
bar_dev_top.append(bar_data[i] + bar_dev[i])
bar_dev_bottom.append(bar_data[i] - bar_dev[i])
latv = [lat / 1000 for lat in latv]
ch = charts.render_vertical_bar(title, legend, [bar_data], [bar_dev_top],
[bar_dev_bottom], file_name=fname,
scale_x=concurence, label_x="clients",
label_y=legend[0],
lines=[
(latv, "msec", "rr", "lat"),
(iops_or_bw_per_vm, None, None,
legend[0] + " per client")
])
return str(ch)
def make_hdd_plots(processed_results, path):
plots = [
('hdd_test_rrd4k', 'rand_read_4k', 'Random read 4k direct IOPS'),
('hdd_test_rws4k', 'rand_write_4k', 'Random write 4k sync IOPS')
]
make_plots(processed_results, path, plots)
def make_ceph_plots(processed_results, path):
plots = [
('ceph_test_rrd4k', 'rand_read_4k', 'Random read 4k direct IOPS'),
('ceph_test_rws4k', 'rand_write_4k', 'Random write 4k sync IOPS'),
('ceph_test_rrd16m', 'rand_read_16m', 'Random read 16m direct MiBps'),
('ceph_test_rwd16m', 'rand_write_16m',
'Random write 16m direct MiBps'),
]
make_plots(processed_results, path, plots)
def make_plots(processed_results, path, plots):
for name_pref, fname, desc in plots:
chart_data = []
for res in processed_results.values():
if res.name.startswith(name_pref):
chart_data.append(res)
if len(chart_data) == 0:
raise ValueError("Can't found any date for " + name_pref)
use_bw = ssize_to_b(chart_data[0].raw['blocksize']) > 16 * 1024
chart_data.sort(key=lambda x: x.raw['concurence'])
lat = [x.lat for x in chart_data]
vm_count = x.meta['testnodes_count']
concurence = [x.raw['concurence'] * vm_count for x in chart_data]
if use_bw:
data = [x.bw for x in chart_data]
data_dev = [x.bw * x.dev for x in chart_data]
name = "BW"
else:
data = [x.iops for x in chart_data]
data_dev = [x.iops * x.dev for x in chart_data]
name = "IOPS"
io_chart(desc, concurence, lat, data, data_dev, name, fname)
def find_max_where(processed_results, sync_mode, blocksize, rw, iops=True):
result = [0, 0]
attr = 'iops' if iops else 'bw'
for measurement in processed_results.values():
ok = measurement.raw['sync_mode'] == sync_mode
ok = ok and (measurement.raw['blocksize'] == blocksize)
ok = ok and (measurement.raw['rw'] == rw)
if ok:
if getattr(measurement, attr) > result[0]:
result = [getattr(measurement, attr), measurement.dev]
return result
def get_disk_info(processed_results):
di = DiskInfo()
rws4k_iops_lat_th = []
di.direct_iops_w_max = find_max_where(processed_results,
'd', '4k', 'randwrite')
di.direct_iops_r_max = find_max_where(processed_results,
'd', '4k', 'randread')
di.bw_write_max = find_max_where(processed_results,
'd', '16m', 'randwrite', False)
di.bw_read_max = find_max_where(processed_results,
'd', '16m', 'randread', False)
for res in processed_results.values():
if res.raw['sync_mode'] == 's' and res.raw['blocksize'] == '4k':
if res.raw['rw'] != 'randwrite':
continue
rws4k_iops_lat_th.append((res.iops, res.lat,
res.raw['concurence']))
di.bw_write_max[0] /= 1000
di.bw_read_max[0] /= 1000
rws4k_iops_lat_th.sort(key=lambda (_1, _2, conc): conc)
latv = [lat for _, lat, _ in rws4k_iops_lat_th]
for tlatv_ms in [10, 30, 100]:
tlat = tlatv_ms * 1000
pos = bisect.bisect_left(latv, tlat)
if 0 == pos:
iops3 = 0
elif pos == len(latv):
iops3 = latv[-1]
else:
lat1 = latv[pos - 1]
lat2 = latv[pos]
th1 = rws4k_iops_lat_th[pos - 1][2]
th2 = rws4k_iops_lat_th[pos][2]
iops1 = rws4k_iops_lat_th[pos - 1][0]
iops2 = rws4k_iops_lat_th[pos][0]
th_lat_coef = (th2 - th1) / (lat2 - lat1)
th3 = th_lat_coef * (tlat - lat1) + th1
th_iops_coef = (iops2 - iops1) / (th2 - th1)
iops3 = th_iops_coef * (th3 - th1) + iops1
setattr(di, 'rws4k_{}ms'.format(tlatv_ms), int(iops3))
hdi = DiskInfo()
def pp(x):
med, dev = round_deviation((x[0], x[1] * x[0]))
# 3 sigma in %
dev = int(float(dev) / med * 100)
return (med, dev)
hdi.direct_iops_r_max = pp(di.direct_iops_r_max)
hdi.direct_iops_w_max = pp(di.direct_iops_w_max)
hdi.bw_write_max = pp(di.bw_write_max)
hdi.bw_read_max = pp(di.bw_read_max)
hdi.rws4k_10ms = di.rws4k_10ms if 0 != di.rws4k_10ms else None
hdi.rws4k_30ms = di.rws4k_30ms if 0 != di.rws4k_30ms else None
hdi.rws4k_100ms = di.rws4k_100ms if 0 != di.rws4k_100ms else None
return hdi
@report('HDD', 'hdd_test_rrd4k,hdd_test_rws4k')
def make_hdd_report(processed_results, path, lab_info):
make_hdd_plots(processed_results, path)
di = get_disk_info(processed_results)
render_hdd_html(path, di, lab_info)
@report('Ceph', 'ceph_test')
def make_ceph_report(processed_results, path, lab_info):
make_ceph_plots(processed_results, path)
di = get_disk_info(processed_results)
render_ceph_html(path, di, lab_info)
def make_io_report(results, path, lab_url=None, creds=None):
lab_info = None
# if lab_url is not None:
# username, password, tenant_name = parse_creds(creds)
# creds = {'username': username,
# 'password': password,
# "tenant_name": tenant_name}
# try:
# data = collect_lab_data(lab_url, creds)
# lab_info = total_lab_info(data)
# except Exception as exc:
# logger.warning("Can't collect lab data: {0!s}".format(exc))
if lab_info is None:
lab_info = {
"total_disk": "None",
"total_memory": "None",
"nodes_count": "None",
"processor_count": "None"
}
try:
processed_results = process_disk_info(results)
res_fields = sorted(processed_results.keys())
for fields, name, func in report_funcs:
for field in fields:
pos = bisect.bisect_left(res_fields, field)
if pos == len(res_fields):
break
if not res_fields[pos].startswith(field):
break
else:
hpath = path.format(name)
logger.debug("Generatins report " + name + " into " + hpath)
func(processed_results, hpath, lab_info)
break
else:
logger.warning("No report generator found for this load")
except Exception as exc:
import traceback
traceback.print_exc()
logger.error("Failed to generate html report:" + str(exc))