blob: 7ecdaa06e4c7ec7260e56fb870071943f83dc2c5 [file] [log] [blame]
import math
import itertools
from numpy import array, linalg
from numpy.polynomial.chebyshev import chebfit, chebval
from scipy.optimize import leastsq
def med_dev(vals):
med = sum(vals) / len(vals)
dev = ((sum(abs(med - i) ** 2.0 for i in vals) / len(vals)) ** 0.5)
return med, dev
def round_deviation(med_dev):
med, dev = med_dev
if dev < 1E-7:
return med_dev
dev_div = 10.0 ** (math.floor(math.log10(dev)) - 1)
dev = int(dev / dev_div) * dev_div
med = int(med / dev_div) * dev_div
return (type(med_dev[0])(med),
type(med_dev[1])(dev))
def groupby_globally(data, key_func):
grouped = {}
grouped_iter = itertools.groupby(data, key_func)
for (bs, cache_tp, act, conc), curr_data_it in grouped_iter:
key = (bs, cache_tp, act, conc)
grouped.setdefault(key, []).extend(curr_data_it)
return grouped
def approximate_curve(x, y, xnew, curved_coef):
"""returns ynew - y values of some curve approximation"""
return chebval(xnew, chebfit(x, y, curved_coef))
def approximate_line(x, y, xnew, relative_dist=False):
""" x, y - test data, xnew - dots, where we want find approximation
if not relative_dist distance = y - newy
returns ynew - y values of linear approximation"""
# convert to numpy.array (don't work without it)
ox = array(x)
oy = array(y)
# define function for initial value
def get_init(x, y):
""" create initial value for better work of leastsq """
A = [[x[i], 1.0] for i in range(0, 2)]
b = [y[i] for i in range(0, 2)]
return tuple(linalg.solve(A, b))
# set approximation function
funcLine = lambda tpl, x: tpl[0] * x + tpl[1]
# choose distance mode
if relative_dist:
ErrorFunc = lambda tpl, x, y: 1.0 - y/funcLine(tpl, x)
else:
ErrorFunc = lambda tpl, x, y: y - funcLine(tpl, x)
# choose initial value
tplInitial = get_init(ox, oy)
# find line
tplFinal, success = leastsq(ErrorFunc, tplInitial[:], args=(ox, oy))
# if error
if success not in range(1, 5):
raise ValueError("No line for this dots")
# return new dots
return funcLine(tplFinal, array(xnew))
def difference(y, ynew):
"""returns average and maximum relative and
absolute differences between y and ynew
result may contain None values for y = 0
return value - tuple:
[(abs dif, rel dif) * len(y)],
(abs average, abs max),
(rel average, rel max)"""
da_sum = 0.0
dr_sum = 0.0
da_max = 0.0
dr_max = 0.0
dlist = []
for y1, y2 in zip(y, ynew):
# absolute
da = y1 - y2
da_sum += abs(da)
if abs(da) > da_max:
da_max = da
# relative
if y1 != 0:
dr = abs(da / y1)
dr_sum += dr
if dr > dr_max:
dr_max = dr
else:
dr = None
# add to list
dlist.append((da, dr))
da_sum /= len(y)
dr_sum /= len(y)
return dlist, (da_sum, da_max), (dr_sum, dr_max)
def calculate_distribution_properties(data):
"""chi, etc"""
def minimal_measurement_amount(data, max_diff, req_probability):
"""
should returns amount of measurements to get results (avg and deviation)
with error less, that max_diff in at least req_probability% cases
"""