blob: 4a8dad9ada02e94b265d05fde10096861669a90c [file] [log] [blame]
import sys
from data_stat import med_dev, round_deviation, groupby_globally
from data_stat import read_data_agent_result
def key(x):
return (x['__meta__']['blocksize'],
'd' if x['__meta__']['direct_io'] else 's',
x['__meta__']['action'],
x['__meta__']['concurence'])
template = "{bs:>4} {action:>12} {cache_tp:>3} {conc:>4}"
template += " | {iops[0]:>6} ~ {iops[1]:>5} | {bw[0]:>7} ~ {bw[1]:>6}"
template += " | {lat[0]:>6} ~ {lat[1]:>5} |"
headers = dict(bs="BS",
action="operation",
cache_tp="S/D",
conc="CONC",
iops=("IOPS", "dev"),
bw=("BW kBps", "dev"),
lat=("LAT ms", "dev"))
def main(argv):
data = read_data_agent_result(sys.argv[1])
grouped = groupby_globally(data, key)
print template.format(**headers)
for (bs, cache_tp, act, conc), curr_data in sorted(grouped.items()):
iops = med_dev([i['iops'] * int(conc) for i in curr_data])
bw_mean = med_dev([i['bw_mean'] * int(conc) for i in curr_data])
lat = med_dev([i['lat'] / 1000 for i in curr_data])
iops = round_deviation(iops)
bw_mean = round_deviation(bw_mean)
lat = round_deviation(lat)
params = dict(
bs=bs,
action=act,
cache_tp=cache_tp,
iops=iops,
bw=bw_mean,
lat=lat,
conc=conc
)
print template.format(**params)
if __name__ == "__main__":
exit(main(sys.argv))
# vals = [(123, 23), (125678, 5678), (123.546756, 23.77),
# (123.546756, 102.77), (0.1234, 0.0224),
# (0.001234, 0.000224), (0.001234, 0.0000224)]
# for val in :
# print val, "=>", round_deviation(val)