blob: f809d19b20b048083604d2a660f5e9d278d14d21 [file] [log] [blame]
import logging
from typing import List
import numpy
from cephlib.units import unit_conversion_coef_f
from cephlib.plot import PlotParams, provide_plot
from .resources import IOSummary
logger = logging.getLogger("wally")
@provide_plot(eng=False, no_legend=True, grid='y', style_name='ioqd', noadjust=True)
def io_chart(pp: PlotParams,
legend: str,
iosums: List[IOSummary],
iops_log_spine: bool = False,
lat_log_spine: bool = False) -> None:
# -------------- MAGIC VALUES ---------------------
# IOPS bar width
width = 0.2
# offset from center of bar to deviation/confidence range indicator
err_x_offset = 0.03
# extra space on top and bottom, comparing to maximal tight layout
extra_y_space = 0.05
# additional spine for BW/IOPS on left side of plot
extra_io_spine_x_offset = -0.1
# extra space on left and right sides
extra_x_space = 0.5
# legend location settings
legend_location = "center left"
legend_bbox_to_anchor = (1.1, 0.81)
# -------------- END OF MAGIC VALUES ---------------------
block_size = iosums[0].block_size
xpos = numpy.arange(1, len(iosums) + 1, dtype='uint')
coef_mb = unit_conversion_coef_f(iosums[0].bw.units, "MiBps")
coef_iops = unit_conversion_coef_f(iosums[0].bw.units, "KiBps") / block_size
iops_primary = block_size < pp.style.large_blocks
coef = coef_iops if iops_primary else coef_mb
pp.ax.set_ylabel("IOPS" if iops_primary else "BW (MiBps)")
vals = [iosum.bw.average * coef for iosum in iosums]
# set correct x limits for primary IO spine
min_io = min(iosum.bw.average - iosum.bw.deviation * pp.style.dev_range_x for iosum in iosums)
max_io = max(iosum.bw.average + iosum.bw.deviation * pp.style.dev_range_x for iosum in iosums)
border = (max_io - min_io) * extra_y_space
io_lims = (min_io - border, max_io + border)
pp.ax.set_ylim(io_lims[0] * coef, io_lims[-1] * coef)
pp.ax.bar(xpos - width / 2, vals, width=width, color=pp.colors.box_color, label=legend)
# plot deviation and confidence error ranges
err1_legend = err2_legend = None
for pos, iosum in zip(xpos, iosums):
dev_bar_pos = pos - err_x_offset
err1_legend = pp.ax.errorbar(dev_bar_pos,
iosum.bw.average * coef,
iosum.bw.deviation * pp.style.dev_range_x * coef,
alpha=pp.colors.subinfo_alpha,
color=pp.colors.suppl_color1) # 'magenta'
conf_bar_pos = pos + err_x_offset
err2_legend = pp.ax.errorbar(conf_bar_pos,
iosum.bw.average * coef,
iosum.bw.confidence * coef,
alpha=pp.colors.subinfo_alpha,
color=pp.colors.suppl_color2) # 'teal'
handles1, labels1 = pp.ax.get_legend_handles_labels()
handles1 += [err1_legend, err2_legend]
labels1 += ["{}% dev".format(pp.style.dev_perc),
"{}% conf".format(int(100 * iosums[0].bw.confidence_level))]
# extra y spine for latency on right side
ax2 = pp.ax.twinx()
# plot median and 95 perc latency
lat_coef_ms = unit_conversion_coef_f(iosums[0].lat.units, "ms")
ax2.plot(xpos, [iosum.lat.perc_50 * lat_coef_ms for iosum in iosums], label="lat med")
ax2.plot(xpos, [iosum.lat.perc_95 * lat_coef_ms for iosum in iosums], label="lat 95%")
for grid_line in ax2.get_ygridlines():
grid_line.set_linestyle(":")
# extra y spine for BW/IOPS on left side
if pp.style.extra_io_spine:
ax3 = pp.ax.twinx()
if iops_log_spine:
ax3.set_yscale('log')
ax3.set_ylabel("BW (MiBps)" if iops_primary else "IOPS")
secondary_coef = coef_mb if iops_primary else coef_iops
ax3.set_ylim(io_lims[0] * secondary_coef, io_lims[1] * secondary_coef)
ax3.spines["left"].set_position(("axes", extra_io_spine_x_offset))
ax3.spines["left"].set_visible(True)
ax3.yaxis.set_label_position('left')
ax3.yaxis.set_ticks_position('left')
else:
ax3 = None
ax2.set_ylabel("Latency (ms)")
# legend box
handles2, labels2 = ax2.get_legend_handles_labels()
pp.ax.legend(handles1 + handles2, labels1 + labels2, loc=legend_location, bbox_to_anchor=legend_bbox_to_anchor)
# limit and label x spine
pp.ax.set_xlim(extra_x_space, len(iosums) + extra_x_space)
pp.ax.set_xticks(xpos)
pp.ax.set_xticklabels(["{0}*{1}={2}".format(iosum.qd, iosum.nodes_count, iosum.qd * iosum.nodes_count)
for iosum in iosums],
rotation=30 if len(iosums) > 9 else 0)
pp.ax.set_xlabel("IO queue depth * test node count = total parallel requests")
# apply log scales for X spines, if set
if iops_log_spine:
pp.ax.set_yscale('log')
if lat_log_spine:
ax2.set_yscale('log')
# override some styles
pp.fig.set_size_inches(*pp.style.qd_chart_inches)
pp.fig.subplots_adjust(right=pp.style.subplot_adjust_r)
if pp.style.extra_io_spine:
ax3.grid(False)