blob: 649032942b5d0e9b2c0da0137bcd2c9590bbd86d [file] [log] [blame]
import logging
import numpy
from cephlib.common import float2str
from cephlib import texttable
from cephlib.statistic import calc_norm_stat_props, calc_histo_stat_props
from .stage import Stage, StepOrder
from .test_run_class import TestRun
from .suits.io.fio import FioTest
from .suits.io.fio_hist import get_lat_vals
from .data_selectors import get_aggregated
logger = logging.getLogger("wally")
class ConsoleReportStage(Stage):
priority = StepOrder.REPORT
def run(self, ctx: TestRun) -> None:
for suite in ctx.rstorage.iter_suite(FioTest.name):
table = texttable.Texttable(max_width=200)
tbl = ctx.rstorage.get_txt_report(suite)
if tbl is None:
table.header(["Description", "IOPS ~ Dev", "BW, MiBps", 'Skew/Kurt', 'lat med, ms', 'lat 95, ms'])
table.set_cols_align(('l', 'r', 'r', 'r', 'r', 'r'))
for job in sorted(ctx.rstorage.iter_job(suite), key=lambda job: job.params):
bw_ts = get_aggregated(ctx.rstorage, suite.storage_id, job.storage_id, metric='bw',
trange=job.reliable_info_range_s)
props = calc_norm_stat_props(bw_ts)
avg_iops = props.average // job.params.params['bsize']
iops_dev = props.deviation // job.params.params['bsize']
lat_ts = get_aggregated(ctx.rstorage, suite.storage_id, job.storage_id, metric='lat',
trange=job.reliable_info_range_s)
bins_edges = numpy.array(get_lat_vals(lat_ts.data.shape[1]), dtype='float32') / 1000 # convert us to ms
lat_props = calc_histo_stat_props(lat_ts, bins_edges)
table.add_row([job.params.summary,
"{} ~ {}".format(float2str(avg_iops), float2str(iops_dev)),
float2str(props.average / 1024), # Ki -> Mi
"{}/{}".format(float2str(props.skew), float2str(props.kurt)),
float2str(lat_props.perc_50), float2str(lat_props.perc_95)])
tbl = table.draw()
ctx.rstorage.put_txt_report(suite, tbl)
print(tbl)