blob: a6629016118104fd7204845d1ddcec0210b4affa [file] [log] [blame]
koder aka kdanilov6c491062015-04-09 22:33:13 +03001import math
2import itertools
3from numpy.polynomial.chebyshev import chebfit, chebval
4
5
6def med_dev(vals):
7 med = sum(vals) / len(vals)
8 dev = ((sum(abs(med - i) ** 2.0 for i in vals) / len(vals)) ** 0.5)
9 return med, dev
10
11
12def round_deviation(med_dev):
13 med, dev = med_dev
14
15 if dev < 1E-7:
16 return med_dev
17
18 dev_div = 10.0 ** (math.floor(math.log10(dev)) - 1)
19 dev = int(dev / dev_div) * dev_div
20 med = int(med / dev_div) * dev_div
21 return (type(med_dev[0])(med),
22 type(med_dev[1])(dev))
23
24
25def groupby_globally(data, key_func):
26 grouped = {}
27 grouped_iter = itertools.groupby(data, key_func)
28
29 for (bs, cache_tp, act, conc), curr_data_it in grouped_iter:
30 key = (bs, cache_tp, act, conc)
31 grouped.setdefault(key, []).extend(curr_data_it)
32
33 return grouped
34
35
36def approximate_curve(x, y, xnew, curved_coef):
37 """returns ynew - y values of some curve approximation"""
38 return chebval(xnew, chebfit(x, y, curved_coef))
39
40
41def approximate_line(x, y, xnew, relative_dist=False):
42 """returns ynew - y values of linear approximation"""
43
44
45def difference(y, ynew):
46 """returns average and maximum relative and
47 absolute differences between y and ynew"""
48
49
50def calculate_distribution_properties(data):
51 """chi, etc"""
52
53
54def minimal_measurement_amount(data, max_diff, req_probability):
55 """
56 should returns amount of measurements to get results (avg and deviation)
57 with error less, that max_diff in at least req_probability% cases
58 """