Move common storage, plot and statistic code to cephlib
diff --git a/wally/data_selectors.py b/wally/data_selectors.py
index a5ac400..3e6bc3e 100644
--- a/wally/data_selectors.py
+++ b/wally/data_selectors.py
@@ -1,20 +1,13 @@
-import ctypes
 import logging
-import os.path
-from typing import Tuple, List, Iterable, Iterator, Optional, Union, Dict
-from fractions import Fraction
+from typing import Tuple, Iterator
 
 import numpy
 
-from cephlib.numeric import auto_edges2
+from cephlib.numeric_types import DataSource, TimeSeries
+from cephlib.storage_selectors import c_interpolate_ts_on_seconds_border
 
-import wally
-from .hlstorage import ResultStorage
-from .node_interfaces import NodeInfo
-from .result_classes import DataSource, TimeSeries, SuiteConfig, JobConfig
-from .suits.io.fio import FioJobConfig
+from .result_classes import IResultStorage
 from .suits.io.fio_hist import expected_lat_bins
-from .utils import unit_conversion_coef
 
 
 logger = logging.getLogger("wally")
@@ -40,52 +33,25 @@
 AGG_TAG = 'ALL'
 
 
-def find_nodes_by_roles(rstorage: ResultStorage, node_roles: Iterable[str]) -> List[NodeInfo]:
-    nodes = rstorage.storage.load_list(NodeInfo, 'all_nodes')  # type: List[NodeInfo]
-    node_roles_s = set(node_roles)
-    return [node for node in nodes if node.roles.intersection(node_roles_s)]
-
-
-def find_all_sensors(rstorage: ResultStorage,
-                     node_roles: Iterable[str],
-                     sensor: str,
-                     metric: str) -> Iterator[TimeSeries]:
-    all_nodes_rr = "|".join(node.node_id for node in find_nodes_by_roles(rstorage, node_roles))
-    all_nodes_rr = "(?P<node>{})".format(all_nodes_rr)
-
-    for path, ds in rstorage.iter_sensors(all_nodes_rr, sensor=sensor, metric=metric):
-        ts = rstorage.load_sensor(ds)
-
-        # for sensors ts.times is array of pairs - collection_start_at, colelction_finished_at
-        # to make this array consistent with times in load data second item if each pair is dropped
-        ts.times = ts.times[::2]
-        yield ts
-
-
-def find_all_series(rstorage: ResultStorage, suite: SuiteConfig, job: JobConfig, metric: str) -> Iterator[TimeSeries]:
+def find_all_series(rstorage: IResultStorage, suite_id: str, job_id: str, metric: str) -> Iterator[TimeSeries]:
     "Iterated over selected metric for all nodes for given Suite/job"
-    return rstorage.iter_ts(suite, job, metric=metric)
+    return (rstorage.get_ts(ds) for ds in rstorage.iter_ts(suite_id=suite_id, job_id=job_id, metric=metric))
 
 
-def get_aggregated(rstorage: ResultStorage, suite: SuiteConfig, job: FioJobConfig, metric: str) -> TimeSeries:
+def get_aggregated(rstorage: IResultStorage, suite_id: str, job_id: str, metric: str,
+                   trange: Tuple[int, int]) -> TimeSeries:
     "Sum selected metric for all nodes for given Suite/job"
 
-    tss = list(find_all_series(rstorage, suite, job, metric))
+    tss = list(find_all_series(rstorage, suite_id, job_id, metric))
 
     if len(tss) == 0:
-        raise NameError("Can't found any TS for {},{},{}".format(suite, job, metric))
+        raise NameError("Can't found any TS for {},{},{}".format(suite_id, job_id, metric))
 
-    ds = DataSource(suite_id=suite.storage_id,
-                    job_id=job.storage_id,
-                    node_id=AGG_TAG,
-                    sensor='fio',
-                    dev=AGG_TAG,
-                    metric=metric,
-                    tag='csv')
+    ds = DataSource(suite_id=suite_id, job_id=job_id, node_id=AGG_TAG, sensor='fio',
+                    dev=AGG_TAG, metric=metric, tag='csv')
 
     tss_inp = [c_interpolate_ts_on_seconds_border(ts, tp='fio', allow_broken_step=(metric == 'lat')) for ts in tss]
     res = None
-    trange = job.reliable_info_range_s
 
     for ts in tss_inp:
         if ts.time_units != 's':
@@ -121,10 +87,7 @@
             assert res.shape == dt.shape, "res.shape(={}) != dt.shape(={})".format(res.shape, dt.shape)
             res += dt
 
-    agg_ts = TimeSeries(metric,
-                        raw=None,
-                        source=ds,
-                        data=res,
+    agg_ts = TimeSeries(res, source=ds,
                         times=tss_inp[0].times.copy(),
                         units=tss_inp[0].units,
                         histo_bins=tss_inp[0].histo_bins,
@@ -132,299 +95,3 @@
 
     return agg_ts
 
-
-interpolated_cache = {}
-
-
-c_interp_func_agg = None
-c_interp_func_qd = None
-c_interp_func_fio = None
-
-
-def c_interpolate_ts_on_seconds_border(ts: TimeSeries, nc: bool = False, tp: str = 'agg',
-                                       allow_broken_step: bool = False) -> TimeSeries:
-    "Interpolate time series to values on seconds borders"
-    key = (ts.source.tpl, tp)
-    if not nc and key in interpolated_cache:
-        return interpolated_cache[key].copy()
-
-    if tp in ('qd', 'agg'):
-        # both data and times must be 1d compact arrays
-        assert len(ts.data.strides) == 1, "ts.data.strides must be 1D, not " + repr(ts.data.strides)
-        assert ts.data.dtype.itemsize == ts.data.strides[0], "ts.data array must be compact"
-
-    assert len(ts.times.strides) == 1, "ts.times.strides must be 1D, not " + repr(ts.times.strides)
-    assert ts.times.dtype.itemsize == ts.times.strides[0], "ts.times array must be compact"
-
-    assert len(ts.times) == len(ts.data), "len(times)={} != len(data)={} for {!s}"\
-            .format(len(ts.times), len(ts.data), ts.source)
-
-    rcoef = 1 / unit_conversion_coef(ts.time_units, 's')  # type: Union[int, Fraction]
-
-    if isinstance(rcoef, Fraction):
-        assert rcoef.denominator == 1, "Incorrect conversion coef {!r}".format(rcoef)
-        rcoef = rcoef.numerator
-
-    assert rcoef >= 1 and isinstance(rcoef, int), "Incorrect conversion coef {!r}".format(rcoef)
-    coef = int(rcoef)   # make typechecker happy
-
-    global c_interp_func_agg
-    global c_interp_func_qd
-    global c_interp_func_fio
-
-    uint64_p = ctypes.POINTER(ctypes.c_uint64)
-
-    if c_interp_func_agg is None:
-        dirname = os.path.dirname(os.path.dirname(wally.__file__))
-        path = os.path.join(dirname, 'clib', 'libwally.so')
-        cdll = ctypes.CDLL(path)
-
-        c_interp_func_agg = cdll.interpolate_ts_on_seconds_border
-        c_interp_func_qd = cdll.interpolate_ts_on_seconds_border_qd
-
-        for func in (c_interp_func_agg, c_interp_func_qd):
-            func.argtypes = [
-                ctypes.c_uint,  # input_size
-                ctypes.c_uint,  # output_size
-                uint64_p,  # times
-                uint64_p,  # values
-                ctypes.c_uint,  # time_scale_coef
-                uint64_p,  # output
-            ]
-            func.restype = ctypes.c_uint  # output array used size
-
-        c_interp_func_fio = cdll.interpolate_ts_on_seconds_border_fio
-        c_interp_func_fio.restype = ctypes.c_int
-        c_interp_func_fio.argtypes = [
-                ctypes.c_uint,  # input_size
-                ctypes.c_uint,  # output_size
-                uint64_p,  # times
-                ctypes.c_uint,  # time_scale_coef
-                uint64_p,  # output indexes
-                ctypes.c_uint64,  # empty placeholder
-                ctypes.c_bool  # allow broken steps
-            ]
-
-    assert ts.data.dtype.name == 'uint64', "Data dtype for {}=={} != uint64".format(ts.source, ts.data.dtype.name)
-    assert ts.times.dtype.name == 'uint64', "Time dtype for {}=={} != uint64".format(ts.source, ts.times.dtype.name)
-
-    output_sz = int(ts.times[-1]) // coef - int(ts.times[0]) // coef + 2
-    result = numpy.zeros(output_sz, dtype=ts.data.dtype.name)
-
-    if tp in ('qd', 'agg'):
-        assert not allow_broken_step, "Broken steps aren't supported for non-fio arrays"
-        func = c_interp_func_qd if tp == 'qd' else c_interp_func_agg
-        sz = func(ts.data.size,
-                  output_sz,
-                  ts.times.ctypes.data_as(uint64_p),
-                  ts.data.ctypes.data_as(uint64_p),
-                  coef,
-                  result.ctypes.data_as(uint64_p))
-
-        result = result[:sz]
-        output_sz = sz
-
-        rtimes = int(ts.times[0] // coef) + numpy.arange(output_sz, dtype=ts.times.dtype)
-    else:
-        assert tp == 'fio'
-        ridx = numpy.zeros(output_sz, dtype=ts.times.dtype)
-        no_data = (output_sz + 1)
-        sz_or_err = c_interp_func_fio(ts.times.size,
-                                      output_sz,
-                                      ts.times.ctypes.data_as(uint64_p),
-                                      coef,
-                                      ridx.ctypes.data_as(uint64_p),
-                                      no_data,
-                                      allow_broken_step)
-        if sz_or_err <= 0:
-            raise ValueError("Error in input array at index {}. {}".format(-sz_or_err, ts.source))
-
-        rtimes = int(ts.times[0] // coef) + numpy.arange(sz_or_err, dtype=ts.times.dtype)
-
-        empty = numpy.zeros(len(ts.histo_bins), dtype=ts.data.dtype) if ts.source.metric == 'lat' else 0
-        res = []
-        for idx in ridx[:sz_or_err]:
-            if idx == no_data:
-                res.append(empty)
-            else:
-                res.append(ts.data[idx])
-        result = numpy.array(res, dtype=ts.data.dtype)
-
-    res_ts = TimeSeries(ts.name, None, result,
-                        times=rtimes,
-                        units=ts.units,
-                        time_units='s',
-                        source=ts.source(),
-                        histo_bins=ts.histo_bins)
-
-    if not nc:
-        interpolated_cache[ts.source.tpl] = res_ts.copy()
-
-    return res_ts
-
-
-def get_ts_for_time_range(ts: TimeSeries, time_range: Tuple[int, int]) -> TimeSeries:
-    """Return sensor values for given node for given period. Return per second estimated values array
-    Raise an error if required range is not full covered by data in storage"""
-
-    assert ts.time_units == 's', "{} != s for {!s}".format(ts.time_units, ts.source)
-    assert len(ts.times) == len(ts.data), "Time(={}) and data(={}) sizes doesn't equal for {!s}"\
-            .format(len(ts.times), len(ts.data), ts.source)
-
-    if time_range[0] < ts.times[0] or time_range[1] > ts.times[-1]:
-        raise AssertionError(("Incorrect data for get_sensor - time_range={!r}, collected_at=[{}, ..., {}]," +
-                              "sensor = {}_{}.{}.{}").format(time_range, ts.times[0], ts.times[-1],
-                                                             ts.source.node_id, ts.source.sensor, ts.source.dev,
-                                                             ts.source.metric))
-    idx1, idx2 = numpy.searchsorted(ts.times, time_range)
-    return TimeSeries(ts.name, None,
-                      ts.data[idx1:idx2],
-                      times=ts.times[idx1:idx2],
-                      units=ts.units,
-                      time_units=ts.time_units,
-                      source=ts.source,
-                      histo_bins=ts.histo_bins)
-
-
-def make_2d_histo(tss: List[TimeSeries],
-                  outliers_range: Tuple[float, float] = (0.02, 0.98),
-                  bins_count: int = 20,
-                  log_bins: bool = False) -> TimeSeries:
-
-    # validate input data
-    for ts in tss:
-        assert len(ts.times) == len(ts.data), "Time(={}) and data(={}) sizes doesn't equal for {!s}"\
-                .format(len(ts.times), len(ts.data), ts.source)
-        assert ts.time_units == 's', "All arrays should have the same data units"
-        assert ts.units == tss[0].units, "All arrays should have the same data units"
-        assert ts.data.shape == tss[0].data.shape, "All arrays should have the same data size"
-        assert len(ts.data.shape) == 1, "All arrays should be 1d"
-
-    whole_arr = numpy.concatenate([ts.data for ts in tss])
-    whole_arr.shape = [len(tss), -1]
-
-    if outliers_range is not None:
-        max_vl, begin, end, min_vl = numpy.percentile(whole_arr,
-                                                      [0, outliers_range[0] * 100, outliers_range[1] * 100, 100])
-        bins_edges = auto_edges2(begin, end, bins=bins_count, log_space=log_bins)
-        fixed_bins_edges = bins_edges.copy()
-        fixed_bins_edges[0] = begin
-        fixed_bins_edges[-1] = end
-    else:
-        begin, end = numpy.percentile(whole_arr, [0, 100])
-        bins_edges = auto_edges2(begin, end, bins=bins_count, log_space=log_bins)
-        fixed_bins_edges = bins_edges
-
-    res_data = numpy.concatenate(numpy.histogram(column, fixed_bins_edges) for column in whole_arr.T)
-    res_data.shape = (len(tss), -1)
-    res = TimeSeries(name=tss[0].name,
-                     raw=None,
-                     data=res_data,
-                     times=tss[0].times,
-                     units=tss[0].units,
-                     source=tss[0].source,
-                     time_units=tss[0].time_units,
-                     histo_bins=bins_edges)
-    return res
-
-
-def aggregate_histograms(tss: List[TimeSeries],
-                         outliers_range: Tuple[float, float] = (0.02, 0.98),
-                         bins_count: int = 20,
-                         log_bins: bool = False) -> TimeSeries:
-
-    # validate input data
-    for ts in tss:
-        assert len(ts.times) == len(ts.data), "Need to use stripped time"
-        assert ts.time_units == 's', "All arrays should have the same data units"
-        assert ts.units == tss[0].units, "All arrays should have the same data units"
-        assert ts.data.shape == tss[0].data.shape, "All arrays should have the same data size"
-        assert len(ts.data.shape) == 2, "All arrays should be 2d"
-        assert ts.histo_bins is not None, "All arrays should be 2d"
-
-    whole_arr = numpy.concatenate([ts.data for ts in tss])
-    whole_arr.shape = [len(tss), -1]
-
-    max_val = whole_arr.min()
-    min_val = whole_arr.max()
-
-    if outliers_range is not None:
-        begin, end = numpy.percentile(whole_arr, [outliers_range[0] * 100, outliers_range[1] * 100])
-    else:
-        begin = min_val
-        end = max_val
-
-    bins_edges = auto_edges2(begin, end, bins=bins_count, log_space=log_bins)
-
-    if outliers_range is not None:
-        fixed_bins_edges = bins_edges.copy()
-        fixed_bins_edges[0] = begin
-        fixed_bins_edges[-1] = end
-    else:
-        fixed_bins_edges = bins_edges
-
-    res_data = numpy.concatenate(numpy.histogram(column, fixed_bins_edges) for column in whole_arr.T)
-    res_data.shape = (len(tss), -1)
-    return TimeSeries(name=tss[0].name,
-                      raw=None,
-                      data=res_data,
-                      times=tss[0].times,
-                      units=tss[0].units,
-                      source=tss[0].source,
-                      time_units=tss[0].time_units,
-                      histo_bins=fixed_bins_edges)
-
-
-qd_metrics = {'io_queue'}
-summ_sensors_cache = {}  # type: Dict[Tuple[Tuple[str, ...], str, str, Tuple[int, int], int], Optional[TimeSeries]]
-
-
-def summ_sensors(rstorage: ResultStorage,
-                 roles: List[str],
-                 sensor: str,
-                 metric: str,
-                 time_range: Tuple[int, int],
-                 nc: bool = False) -> Optional[TimeSeries]:
-
-    key = (tuple(roles), sensor, metric, time_range, id(ResultStorage))
-    if not nc and key in summ_sensors_cache:
-        return summ_sensors_cache[key].copy()
-
-    res = None  # type: Optional[TimeSeries]
-    for node in find_nodes_by_roles(rstorage, roles):
-        for _, ds in rstorage.iter_sensors(node_id=node.node_id, sensor=sensor, metric=metric):
-            data = rstorage.load_sensor(ds)
-            data = c_interpolate_ts_on_seconds_border(data, 'qd' if metric in qd_metrics else 'agg')
-            data = get_ts_for_time_range(data, time_range)
-            if res is None:
-                res = data
-                res.data = res.data.copy()
-            else:
-                res.data += data.data
-
-    if not nc:
-        summ_sensors_cache[key] = res
-        if len(summ_sensors_cache) > 1024:
-            logger.warning("summ_sensors_cache cache too large %s > 1024", len(summ_sensors_cache))
-
-    return res if res is None else res.copy()
-
-
-def find_sensors_to_2d(rstorage: ResultStorage,
-                       roles: List[str],
-                       sensor: str,
-                       devs: List[str],
-                       metric: str,
-                       time_range: Tuple[int, int]) -> numpy.ndarray:
-
-    res = []  # type: List[TimeSeries]
-    for node in find_nodes_by_roles(rstorage, roles):
-        for dev in devs:
-            for _, ds in rstorage.iter_sensors(node_id=node.node_id, sensor=sensor, dev=dev, metric=metric):
-                data = rstorage.load_sensor(ds)
-                data = c_interpolate_ts_on_seconds_border(data, 'qd' if metric in qd_metrics else 'agg')
-                data = get_ts_for_time_range(data, time_range)
-                res.append(data.data)
-    res2d = numpy.concatenate(res)
-    res2d.shape = ((len(res), -1))
-    return res2d