2.0 is on the way
diff --git a/wally/report.py b/wally/report.py
index ed3c362..88c97b7 100644
--- a/wally/report.py
+++ b/wally/report.py
@@ -5,7 +5,7 @@
 import itertools
 import collections
 from io import StringIO
-from typing import Dict
+from typing import Dict, Any, Iterator, Tuple, cast
 
 try:
     import numpy
@@ -19,6 +19,8 @@
 import wally
 from .utils import ssize2b
 from .statistic import round_3_digit
+from .storage import Storage
+from .result_classes import TestInfo, FullTestResult, SensorInfo
 from .suits.io.fio_task_parser import (get_test_sync_mode,
                                        get_test_summary,
                                        parse_all_in_1,
@@ -28,811 +30,1546 @@
 logger = logging.getLogger("wally.report")
 
 
-class DiskInfo:
-    def __init__(self):
-        self.direct_iops_r_max = 0
-        self.direct_iops_w_max = 0
+def load_test_results(storage: Storage) -> Iterator[FullTestResult]:
+    sensors_data = {}  # type: Dict[Tuple[str, str, str], SensorInfo]
 
-        # 64 used instead of 4k to faster feed caches
-        self.direct_iops_w64_max = 0
+    for _, node_id in storage.list("metric"):
+        for _, dev_name in storage.list("metric", node_id):
+            for _, sensor_name in storage.list("metric", node_id, dev_name):
+                key = (node_id, dev_name, sensor_name)
+                si = SensorInfo(*key)
+                si.begin_time, si.end_time, si.data = storage["metric/{}/{}/{}".format(*key)]  # type: ignore
+                sensors_data[key] = si
 
-        self.rws4k_10ms = 0
-        self.rws4k_30ms = 0
-        self.rws4k_100ms = 0
-        self.bw_write_max = 0
-        self.bw_read_max = 0
+    for _, run_id in storage.list("result"):
+        path = "result/" + run_id
+        ftr = FullTestResult()
+        ftr.info = storage.load(TestInfo, path, "info")
+        ftr.performance_data = {}
 
+        p1 = "result/{}/measurement".format(run_id)
+        for _, node_id in storage.list(p1):
+            for _, measurement_name in storage.list(p1, node_id):
+                perf_key = (node_id, measurement_name)
+                ftr.performance_data[perf_key] = storage["{}/{}/{}".format(p1, *perf_key)]  # type: ignore
 
-report_funcs = []
+        yield ftr
 
 
-class Attrmapper(object):
-    def __init__(self, dct: Dict):
-        self.__dct = dct
-
-    def __getattr__(self, name):
-        try:
-            return self.__dct[name]
-        except KeyError:
-            raise AttributeError(name)
-
-
-class PerfInfo(object):
-    def __init__(self, name, summary, intervals, params, testnodes_count):
-        self.name = name
-        self.bw = None
-        self.iops = None
-        self.lat = None
-        self.lat_50 = None
-        self.lat_95 = None
-
-        self.raw_bw = []
-        self.raw_iops = []
-        self.raw_lat = []
-
-        self.params = params
-        self.intervals = intervals
-        self.testnodes_count = testnodes_count
-        self.summary = summary
-        self.p = Attrmapper(self.params.vals)
-
-        self.sync_mode = get_test_sync_mode(self.params)
-        self.concurence = self.params.vals.get('numjobs', 1)
-
-
-# disk_info = None
-# base = None
-# linearity = None
-
-
-def group_by_name(test_data):
-    name_map = collections.defaultdict(lambda: [])
-
-    for data in test_data:
-        name_map[(data.name, data.summary())].append(data)
-
-    return name_map
-
-
-def report(name, required_fields):
-    def closure(func):
-        report_funcs.append((required_fields.split(","), name, func))
-        return func
-    return closure
-
-
-def get_test_lcheck_params(pinfo):
-    res = [{
-        's': 'sync',
-        'd': 'direct',
-        'a': 'async',
-        'x': 'sync direct'
-    }[pinfo.sync_mode]]
-
-    res.append(pinfo.p.rw)
-
-    return " ".join(res)
-
-
-def get_emb_data_svg(plt):
-    sio = StringIO()
-    plt.savefig(sio, format='svg')
-    img_start = "<!-- Created with matplotlib (http://matplotlib.org/) -->"
-    return sio.getvalue().split(img_start, 1)[1]
-
-
-def get_template(templ_name):
-    very_root_dir = os.path.dirname(os.path.dirname(wally.__file__))
-    templ_dir = os.path.join(very_root_dir, 'report_templates')
-    templ_file = os.path.join(templ_dir, templ_name)
-    return open(templ_file, 'r').read()
-
-
-def group_by(data, func):
-    if len(data) < 2:
-        yield data
-        return
-
-    ndata = [(func(dt), dt) for dt in data]
-    ndata.sort(key=func)
-    pkey, dt = ndata[0]
-    curr_list = [dt]
-
-    for key, val in ndata[1:]:
-        if pkey != key:
-            yield curr_list
-            curr_list = [val]
-        else:
-            curr_list.append(val)
-        pkey = key
-
-    yield curr_list
-
-
-@report('linearity', 'linearity_test')
-def linearity_report(processed_results, lab_info, comment):
-    labels_and_data_mp = collections.defaultdict(lambda: [])
-    vls = {}
-
-    # plot io_time = func(bsize)
-    for res in processed_results.values():
-        if res.name.startswith('linearity_test'):
-            iotimes = [1000. / val for val in res.iops.raw]
-
-            op_summ = get_test_summary(res.params)[:3]
-
-            labels_and_data_mp[op_summ].append(
-                [res.p.blocksize, res.iops.raw, iotimes])
-
-            cvls = res.params.vals.copy()
-            del cvls['blocksize']
-            del cvls['rw']
-
-            cvls.pop('sync', None)
-            cvls.pop('direct', None)
-            cvls.pop('buffered', None)
-
-            if op_summ not in vls:
-                vls[op_summ] = cvls
-            else:
-                assert cvls == vls[op_summ]
-
-    all_labels = None
-    _, ax1 = plt.subplots()
-    for name, labels_and_data in labels_and_data_mp.items():
-        labels_and_data.sort(key=lambda x: ssize2b(x[0]))
-
-        labels, _, iotimes = zip(*labels_and_data)
-
-        if all_labels is None:
-            all_labels = labels
-        else:
-            assert all_labels == labels
-
-        plt.boxplot(iotimes)
-        if len(labels_and_data) > 2 and \
-           ssize2b(labels_and_data[-2][0]) >= 4096:
-
-            xt = range(1, len(labels) + 1)
-
-            def io_time(sz, bw, initial_lat):
-                return sz / bw + initial_lat
-
-            x = numpy.array(map(ssize2b, labels))
-            y = numpy.array([sum(dt) / len(dt) for dt in iotimes])
-            popt, _ = scipy.optimize.curve_fit(io_time, x, y, p0=(100., 1.))
-
-            y1 = io_time(x, *popt)
-            plt.plot(xt, y1, linestyle='--',
-                     label=name + ' LS linear approx')
-
-            for idx, (sz, _, _) in enumerate(labels_and_data):
-                if ssize2b(sz) >= 4096:
-                    break
-
-            bw = (x[-1] - x[idx]) / (y[-1] - y[idx])
-            lat = y[-1] - x[-1] / bw
-            y2 = io_time(x, bw, lat)
-            plt.plot(xt, y2, linestyle='--',
-                     label=abbv_name_to_full(name) +
-                     ' (4k & max) linear approx')
-
-    plt.setp(ax1, xticklabels=labels)
-
-    plt.xlabel("Block size")
-    plt.ylabel("IO time, ms")
-
-    plt.subplots_adjust(top=0.85)
-    plt.legend(bbox_to_anchor=(0.5, 1.15),
-               loc='upper center',
-               prop={'size': 10}, ncol=2)
-    plt.grid()
-    iotime_plot = get_emb_data_svg(plt)
-    plt.clf()
-
-    # plot IOPS = func(bsize)
-    _, ax1 = plt.subplots()
-
-    for name, labels_and_data in labels_and_data_mp.items():
-        labels_and_data.sort(key=lambda x: ssize2b(x[0]))
-        _, data, _ = zip(*labels_and_data)
-        plt.boxplot(data)
-        avg = [float(sum(arr)) / len(arr) for arr in data]
-        xt = range(1, len(data) + 1)
-        plt.plot(xt, avg, linestyle='--',
-                 label=abbv_name_to_full(name) + " avg")
-
-    plt.setp(ax1, xticklabels=labels)
-    plt.xlabel("Block size")
-    plt.ylabel("IOPS")
-    plt.legend(bbox_to_anchor=(0.5, 1.15),
-               loc='upper center',
-               prop={'size': 10}, ncol=2)
-    plt.grid()
-    plt.subplots_adjust(top=0.85)
-
-    iops_plot = get_emb_data_svg(plt)
-
-    res = set(get_test_lcheck_params(res) for res in processed_results.values())
-    ncount = list(set(res.testnodes_count for res in processed_results.values()))
-    conc = list(set(res.concurence for res in processed_results.values()))
-
-    assert len(conc) == 1
-    assert len(ncount) == 1
-
-    descr = {
-        'vm_count': ncount[0],
-        'concurence': conc[0],
-        'oper_descr': ", ".join(res).capitalize()
-    }
-
-    params_map = {'iotime_vs_size': iotime_plot,
-                  'iops_vs_size': iops_plot,
-                  'descr': descr}
-
-    return get_template('report_linearity.html').format(**params_map)
-
-
-@report('lat_vs_iops', 'lat_vs_iops')
-def lat_vs_iops(processed_results, lab_info, comment):
-    lat_iops = collections.defaultdict(lambda: [])
-    requsted_vs_real = collections.defaultdict(lambda: {})
-
-    for res in processed_results.values():
-        if res.name.startswith('lat_vs_iops'):
-            lat_iops[res.concurence].append((res.lat,
-                                             0,
-                                             res.iops.average,
-                                             res.iops.deviation))
-            # lat_iops[res.concurence].append((res.lat.average / 1000.0,
-            #                                  res.lat.deviation / 1000.0,
-            #                                  res.iops.average,
-            #                                  res.iops.deviation))
-            requested_iops = res.p.rate_iops * res.concurence
-            requsted_vs_real[res.concurence][requested_iops] = \
-                (res.iops.average, res.iops.deviation)
-
-    colors = ['red', 'green', 'blue', 'orange', 'magenta', "teal"]
-    colors_it = iter(colors)
-    for conc, lat_iops in sorted(lat_iops.items()):
-        lat, dev, iops, iops_dev = zip(*lat_iops)
-        plt.errorbar(iops, lat, xerr=iops_dev, yerr=dev, fmt='ro',
-                     label=str(conc) + " threads",
-                     color=next(colors_it))
-
-    plt.xlabel("IOPS")
-    plt.ylabel("Latency, ms")
-    plt.grid()
-    plt.legend(loc=0)
-    plt_iops_vs_lat = get_emb_data_svg(plt)
-    plt.clf()
-
-    colors_it = iter(colors)
-    for conc, req_vs_real in sorted(requsted_vs_real.items()):
-        req, real = zip(*sorted(req_vs_real.items()))
-        iops, dev = zip(*real)
-        plt.errorbar(req, iops, yerr=dev, fmt='ro',
-                     label=str(conc) + " threads",
-                     color=next(colors_it))
-    plt.xlabel("Requested IOPS")
-    plt.ylabel("Get IOPS")
-    plt.grid()
-    plt.legend(loc=0)
-    plt_iops_vs_requested = get_emb_data_svg(plt)
-
-    res1 = processed_results.values()[0]
-    params_map = {'iops_vs_lat': plt_iops_vs_lat,
-                  'iops_vs_requested': plt_iops_vs_requested,
-                  'oper_descr': get_test_lcheck_params(res1).capitalize()}
-
-    return get_template('report_iops_vs_lat.html').format(**params_map)
-
-
-def render_all_html(comment, info, lab_description, images, templ_name):
-    data = info.__dict__.copy()
-    for name, val in data.items():
-        if not name.startswith('__'):
-            if val is None:
-                if name in ('direct_iops_w64_max', 'direct_iops_w_max'):
-                    data[name] = ('-', '-', '-')
-                else:
-                    data[name] = '-'
-            elif isinstance(val, (int, float, long)):
-                data[name] = round_3_digit(val)
-
-    data['bw_read_max'] = (data['bw_read_max'][0] // 1024,
-                           data['bw_read_max'][1],
-                           data['bw_read_max'][2])
-
-    data['bw_write_max'] = (data['bw_write_max'][0] // 1024,
-                            data['bw_write_max'][1],
-                            data['bw_write_max'][2])
-
-    images.update(data)
-    templ = get_template(templ_name)
-    return templ.format(lab_info=lab_description,
-                        comment=comment,
-                        **images)
-
-
-def io_chart(title, concurence,
-             latv, latv_min, latv_max,
-             iops_or_bw, iops_or_bw_err,
-             legend,
-             log_iops=False,
-             log_lat=False,
-             boxplots=False,
-             latv_50=None,
-             latv_95=None,
-             error2=None):
-
-    matplotlib.rcParams.update({'font.size': 10})
-    points = " MiBps" if legend == 'BW' else ""
-    lc = len(concurence)
-    width = 0.35
-    xt = range(1, lc + 1)
-
-    op_per_vm = [v / (vm * th) for v, (vm, th) in zip(iops_or_bw, concurence)]
-    fig, p1 = plt.subplots()
-    xpos = [i - width / 2 for i in xt]
-
-    p1.bar(xpos, iops_or_bw,
-           width=width,
-           color='y',
-           label=legend)
-
-    err1_leg = None
-    for pos, y, err in zip(xpos, iops_or_bw, iops_or_bw_err):
-        err1_leg = p1.errorbar(pos + width / 2,
-                               y,
-                               err,
-                               color='magenta')
-
-    err2_leg = None
-    if error2 is not None:
-        for pos, y, err in zip(xpos, iops_or_bw, error2):
-            err2_leg = p1.errorbar(pos + width / 2 + 0.08,
-                                   y,
-                                   err,
-                                   lw=2,
-                                   alpha=0.5,
-                                   color='teal')
-
-    p1.grid(True)
-    p1.plot(xt, op_per_vm, '--', label=legend + "/thread", color='black')
-    handles1, labels1 = p1.get_legend_handles_labels()
-
-    handles1 += [err1_leg]
-    labels1 += ["95% conf"]
-
-    if err2_leg is not None:
-        handles1 += [err2_leg]
-        labels1 += ["95% dev"]
-
-    p2 = p1.twinx()
-
-    if latv_50 is None:
-        p2.plot(xt, latv_max, label="lat max")
-        p2.plot(xt, latv, label="lat avg")
-        p2.plot(xt, latv_min, label="lat min")
-    else:
-        p2.plot(xt, latv_50, label="lat med")
-        p2.plot(xt, latv_95, label="lat 95%")
-
-    plt.xlim(0.5, lc + 0.5)
-    plt.xticks(xt, ["{0} * {1}".format(vm, th) for (vm, th) in concurence])
-    p1.set_xlabel("VM Count * Thread per VM")
-    p1.set_ylabel(legend + points)
-    p2.set_ylabel("Latency ms")
-    plt.title(title)
-    handles2, labels2 = p2.get_legend_handles_labels()
-
-    plt.legend(handles1 + handles2, labels1 + labels2,
-               loc='center left', bbox_to_anchor=(1.1, 0.81))
-
-    if log_iops:
-        p1.set_yscale('log')
-
-    if log_lat:
-        p2.set_yscale('log')
-
-    plt.subplots_adjust(right=0.68)
-
-    return get_emb_data_svg(plt)
-
-
-def make_plots(processed_results, plots):
-    """
-    processed_results: [PerfInfo]
-    plots = [(test_name_prefix:str, fname:str, description:str)]
-    """
-    files = {}
-    for name_pref, fname, desc in plots:
-        chart_data = []
-
-        for res in processed_results:
-            summ = res.name + "_" + res.summary
-            if summ.startswith(name_pref):
-                chart_data.append(res)
-
-        if len(chart_data) == 0:
-            raise ValueError("Can't found any date for " + name_pref)
-
-        use_bw = ssize2b(chart_data[0].p.blocksize) > 16 * 1024
-
-        chart_data.sort(key=lambda x: x.params['vals']['numjobs'])
-
-        lat = None
-        lat_min = None
-        lat_max = None
-
-        lat_50 = [x.lat_50 for x in chart_data]
-        lat_95 = [x.lat_95 for x in chart_data]
-
-        lat_diff_max = max(x.lat_95 / x.lat_50 for x in chart_data)
-        lat_log_scale = (lat_diff_max > 10)
-
-        testnodes_count = x.testnodes_count
-        concurence = [(testnodes_count, x.concurence)
-                      for x in chart_data]
-
-        if use_bw:
-            data = [x.bw.average / 1000 for x in chart_data]
-            data_conf = [x.bw.confidence / 1000 for x in chart_data]
-            data_dev = [x.bw.deviation * 2.5 / 1000 for x in chart_data]
-            name = "BW"
-        else:
-            data = [x.iops.average for x in chart_data]
-            data_conf = [x.iops.confidence for x in chart_data]
-            data_dev = [x.iops.deviation * 2 for x in chart_data]
-            name = "IOPS"
-
-        fc = io_chart(title=desc,
-                      concurence=concurence,
-
-                      latv=lat,
-                      latv_min=lat_min,
-                      latv_max=lat_max,
-
-                      iops_or_bw=data,
-                      iops_or_bw_err=data_conf,
-
-                      legend=name,
-                      log_lat=lat_log_scale,
-
-                      latv_50=lat_50,
-                      latv_95=lat_95,
-
-                      error2=data_dev)
-        files[fname] = fc
-
-    return files
-
-
-def find_max_where(processed_results, sync_mode, blocksize, rw, iops=True):
-    result = None
-    attr = 'iops' if iops else 'bw'
-    for measurement in processed_results:
-        ok = measurement.sync_mode == sync_mode
-        ok = ok and (measurement.p.blocksize == blocksize)
-        ok = ok and (measurement.p.rw == rw)
-
-        if ok:
-            field = getattr(measurement, attr)
-
-            if result is None:
-                result = field
-            elif field.average > result.average:
-                result = field
-
-    return result
-
-
-def get_disk_info(processed_results):
-    di = DiskInfo()
-    di.direct_iops_w_max = find_max_where(processed_results,
-                                          'd', '4k', 'randwrite')
-    di.direct_iops_r_max = find_max_where(processed_results,
-                                          'd', '4k', 'randread')
-
-    di.direct_iops_w64_max = find_max_where(processed_results,
-                                            'd', '64k', 'randwrite')
-
-    for sz in ('16m', '64m'):
-        di.bw_write_max = find_max_where(processed_results,
-                                         'd', sz, 'randwrite', False)
-        if di.bw_write_max is not None:
-            break
-
-    if di.bw_write_max is None:
-        for sz in ('1m', '2m', '4m', '8m'):
-            di.bw_write_max = find_max_where(processed_results,
-                                             'd', sz, 'write', False)
-            if di.bw_write_max is not None:
-                break
-
-    for sz in ('16m', '64m'):
-        di.bw_read_max = find_max_where(processed_results,
-                                        'd', sz, 'randread', False)
-        if di.bw_read_max is not None:
-            break
-
-    if di.bw_read_max is None:
-        di.bw_read_max = find_max_where(processed_results,
-                                        'd', '1m', 'read', False)
-
-    rws4k_iops_lat_th = []
-    for res in processed_results:
-        if res.sync_mode in 'xs' and res.p.blocksize == '4k':
-            if res.p.rw != 'randwrite':
-                continue
-            rws4k_iops_lat_th.append((res.iops.average,
-                                      res.lat,
-                                      # res.lat.average,
-                                      res.concurence))
-
-    rws4k_iops_lat_th.sort(key=lambda x: x[2])
-
-    latv = [lat for _, lat, _ in rws4k_iops_lat_th]
-
-    for tlat in [10, 30, 100]:
-        pos = bisect.bisect_left(latv, tlat)
-        if 0 == pos:
-            setattr(di, 'rws4k_{}ms'.format(tlat), 0)
-        elif pos == len(latv):
-            iops3, _, _ = rws4k_iops_lat_th[-1]
-            iops3 = int(round_3_digit(iops3))
-            setattr(di, 'rws4k_{}ms'.format(tlat), ">=" + str(iops3))
-        else:
-            lat1 = latv[pos - 1]
-            lat2 = latv[pos]
-
-            iops1, _, th1 = rws4k_iops_lat_th[pos - 1]
-            iops2, _, th2 = rws4k_iops_lat_th[pos]
-
-            th_lat_coef = (th2 - th1) / (lat2 - lat1)
-            th3 = th_lat_coef * (tlat - lat1) + th1
-
-            th_iops_coef = (iops2 - iops1) / (th2 - th1)
-            iops3 = th_iops_coef * (th3 - th1) + iops1
-            iops3 = int(round_3_digit(iops3))
-            setattr(di, 'rws4k_{}ms'.format(tlat), iops3)
-
-    hdi = DiskInfo()
-
-    def pp(x):
-        med, conf = x.rounded_average_conf()
-        conf_perc = int(float(conf) / med * 100)
-        dev_perc = int(float(x.deviation) / med * 100)
-        return (round_3_digit(med), conf_perc, dev_perc)
-
-    hdi.direct_iops_r_max = pp(di.direct_iops_r_max)
-
-    if di.direct_iops_w_max is not None:
-        hdi.direct_iops_w_max = pp(di.direct_iops_w_max)
-    else:
-        hdi.direct_iops_w_max = None
-
-    if di.direct_iops_w64_max is not None:
-        hdi.direct_iops_w64_max = pp(di.direct_iops_w64_max)
-    else:
-        hdi.direct_iops_w64_max = None
-
-    hdi.bw_write_max = pp(di.bw_write_max)
-    hdi.bw_read_max = pp(di.bw_read_max)
-
-    hdi.rws4k_10ms = di.rws4k_10ms if 0 != di.rws4k_10ms else None
-    hdi.rws4k_30ms = di.rws4k_30ms if 0 != di.rws4k_30ms else None
-    hdi.rws4k_100ms = di.rws4k_100ms if 0 != di.rws4k_100ms else None
-    return hdi
-
-
-@report('hdd', 'hdd')
-def make_hdd_report(processed_results, lab_info, comment):
-    plots = [
-        ('hdd_rrd4k', 'rand_read_4k', 'Random read 4k direct IOPS'),
-        ('hdd_rwx4k', 'rand_write_4k', 'Random write 4k sync IOPS')
-    ]
-    perf_infos = [res.disk_perf_info() for res in processed_results]
-    images = make_plots(perf_infos, plots)
-    di = get_disk_info(perf_infos)
-    return render_all_html(comment, di, lab_info, images, "report_hdd.html")
-
-
-@report('cinder_iscsi', 'cinder_iscsi')
-def make_cinder_iscsi_report(processed_results, lab_info, comment):
-    plots = [
-        ('cinder_iscsi_rrd4k', 'rand_read_4k', 'Random read 4k direct IOPS'),
-        ('cinder_iscsi_rwx4k', 'rand_write_4k', 'Random write 4k sync IOPS')
-    ]
-    perf_infos = [res.disk_perf_info() for res in processed_results]
-    try:
-        images = make_plots(perf_infos, plots)
-    except ValueError:
-        plots = [
-            ('cinder_iscsi_rrd4k', 'rand_read_4k', 'Random read 4k direct IOPS'),
-            ('cinder_iscsi_rws4k', 'rand_write_4k', 'Random write 4k sync IOPS')
-        ]
-        images = make_plots(perf_infos, plots)
-    di = get_disk_info(perf_infos)
-
-    return render_all_html(comment, di, lab_info, images, "report_cinder_iscsi.html")
-
-
-@report('ceph', 'ceph')
-def make_ceph_report(processed_results, lab_info, comment):
-    plots = [
-        ('ceph_rrd4k', 'rand_read_4k', 'Random read 4k direct IOPS'),
-        ('ceph_rws4k', 'rand_write_4k', 'Random write 4k sync IOPS'),
-        ('ceph_rrd16m', 'rand_read_16m', 'Random read 16m direct MiBps'),
-        ('ceph_rwd16m', 'rand_write_16m',
-         'Random write 16m direct MiBps'),
-    ]
-
-    perf_infos = [res.disk_perf_info() for res in processed_results]
-    images = make_plots(perf_infos, plots)
-    di = get_disk_info(perf_infos)
-    return render_all_html(comment, di, lab_info, images, "report_ceph.html")
-
-
-@report('mixed', 'mixed')
-def make_mixed_report(processed_results, lab_info, comment):
-    #
-    # IOPS(X% read) = 100 / ( X / IOPS_W + (100 - X) / IOPS_R )
-    #
-
-    perf_infos = [res.disk_perf_info() for res in processed_results]
-    mixed = collections.defaultdict(lambda: [])
-
-    is_ssd = False
-    for res in perf_infos:
-        if res.name.startswith('mixed'):
-            if res.name.startswith('mixed-ssd'):
-                is_ssd = True
-            mixed[res.concurence].append((res.p.rwmixread,
-                                          res.lat,
-                                          0,
-                                          # res.lat.average / 1000.0,
-                                          # res.lat.deviation / 1000.0,
-                                          res.iops.average,
-                                          res.iops.deviation))
-
-    if len(mixed) == 0:
-        raise ValueError("No mixed load found")
-
-    fig, p1 = plt.subplots()
-    p2 = p1.twinx()
-
-    colors = ['red', 'green', 'blue', 'orange', 'magenta', "teal"]
-    colors_it = iter(colors)
-    for conc, mix_lat_iops in sorted(mixed.items()):
-        mix_lat_iops = sorted(mix_lat_iops)
-        read_perc, lat, dev, iops, iops_dev = zip(*mix_lat_iops)
-        p1.errorbar(read_perc, iops, color=next(colors_it),
-                    yerr=iops_dev, label=str(conc) + " th")
-
-        p2.errorbar(read_perc, lat, color=next(colors_it),
-                    ls='--', yerr=dev, label=str(conc) + " th lat")
-
-    if is_ssd:
-        p1.set_yscale('log')
-        p2.set_yscale('log')
-
-    p1.set_xlim(-5, 105)
-
-    read_perc = set(read_perc)
-    read_perc.add(0)
-    read_perc.add(100)
-    read_perc = sorted(read_perc)
-
-    plt.xticks(read_perc, map(str, read_perc))
-
-    p1.grid(True)
-    p1.set_xlabel("% of reads")
-    p1.set_ylabel("Mixed IOPS")
-    p2.set_ylabel("Latency, ms")
-
-    handles1, labels1 = p1.get_legend_handles_labels()
-    handles2, labels2 = p2.get_legend_handles_labels()
-    plt.subplots_adjust(top=0.85)
-    plt.legend(handles1 + handles2, labels1 + labels2,
-               bbox_to_anchor=(0.5, 1.15),
-               loc='upper center',
-               prop={'size': 12}, ncol=3)
-    plt.show()
-
-
-def make_load_report(idx, results_dir, fname):
-    dpath = os.path.join(results_dir, "io_" + str(idx))
-    files = sorted(os.listdir(dpath))
-    gf = lambda x: "_".join(x.rsplit(".", 1)[0].split('_')[:3])
-
-    for key, group in itertools.groupby(files, gf):
-        fname = os.path.join(dpath, key + ".fio")
-
-        cfgs = list(parse_all_in_1(open(fname).read(), fname))
-
-        fname = os.path.join(dpath, key + "_lat.log")
-
-        curr = []
-        arrays = []
-
-        with open(fname) as fd:
-            for offset, lat, _, _ in csv.reader(fd):
-                offset = int(offset)
-                lat = int(lat)
-                if len(curr) > 0 and curr[-1][0] > offset:
-                    arrays.append(curr)
-                    curr = []
-                curr.append((offset, lat))
-            arrays.append(curr)
-        conc = int(cfgs[0].vals.get('numjobs', 1))
-
-        if conc != 5:
-            continue
-
-        assert len(arrays) == len(cfgs) * conc
-
-        garrays = [[(0, 0)] for _ in range(conc)]
-
-        for offset in range(len(cfgs)):
-            for acc, new_arr in zip(garrays, arrays[offset * conc:(offset + 1) * conc]):
-                last = acc[-1][0]
-                for off, lat in new_arr:
-                    acc.append((off / 1000. + last, lat / 1000.))
-
-        for cfg, arr in zip(cfgs, garrays):
-            plt.plot(*zip(*arr[1:]))
-        plt.show()
-        exit(1)
-
-
-def make_io_report(dinfo, comment, path, lab_info=None):
-    lab_info = {
-        "total_disk": "None",
-        "total_memory": "None",
-        "nodes_count": "None",
-        "processor_count": "None"
-    }
-
-    try:
-        res_fields = sorted(v.name for v in dinfo)
-
-        found = False
-        for fields, name, func in report_funcs:
-            for field in fields:
-                pos = bisect.bisect_left(res_fields, field)
-
-                if pos == len(res_fields):
-                    break
-
-                if not res_fields[pos].startswith(field):
-                    break
-            else:
-                found = True
-                hpath = path.format(name)
-
-                try:
-                    report = func(dinfo, lab_info, comment)
-                except:
-                    logger.exception("Diring {0} report generation".format(name))
-                    continue
-
-                if report is not None:
-                    try:
-                        with open(hpath, "w") as fd:
-                            fd.write(report)
-                    except:
-                        logger.exception("Diring saving {0} report".format(name))
-                        continue
-                    logger.info("Report {0} saved into {1}".format(name, hpath))
-                else:
-                    logger.warning("No report produced by {0!r}".format(name))
-
-        if not found:
-            logger.warning("No report generator found for this load")
-
-    except Exception as exc:
-        import traceback
-        traceback.print_exc()
-        logger.error("Failed to generate html report:" + str(exc))
+# class StoragePerfInfo:
+#     def __init__(self, name: str, summary: Any, params, testnodes_count) -> None:
+#         self.direct_iops_r_max = 0  # type: int
+#         self.direct_iops_w_max = 0  # type: int
+#
+#         # 64 used instead of 4k to faster feed caches
+#         self.direct_iops_w64_max = 0  # type: int
+#
+#         self.rws4k_10ms = 0  # type: int
+#         self.rws4k_30ms = 0  # type: int
+#         self.rws4k_100ms = 0  # type: int
+#         self.bw_write_max = 0  # type: int
+#         self.bw_read_max = 0  # type: int
+#
+#         self.bw = None  #
+#         self.iops = None
+#         self.lat = None
+#         self.lat_50 = None
+#         self.lat_95 = None
+#
+#
+# # disk_info = None
+# # base = None
+# # linearity = None
+#
+#
+# def group_by_name(test_data):
+#     name_map = collections.defaultdict(lambda: [])
+#
+#     for data in test_data:
+#         name_map[(data.name, data.summary())].append(data)
+#
+#     return name_map
+#
+#
+# def report(name, required_fields):
+#     def closure(func):
+#         report_funcs.append((required_fields.split(","), name, func))
+#         return func
+#     return closure
+#
+#
+# def get_test_lcheck_params(pinfo):
+#     res = [{
+#         's': 'sync',
+#         'd': 'direct',
+#         'a': 'async',
+#         'x': 'sync direct'
+#     }[pinfo.sync_mode]]
+#
+#     res.append(pinfo.p.rw)
+#
+#     return " ".join(res)
+#
+#
+# def get_emb_data_svg(plt):
+#     sio = StringIO()
+#     plt.savefig(sio, format='svg')
+#     img_start = "<!-- Created with matplotlib (http://matplotlib.org/) -->"
+#     return sio.getvalue().split(img_start, 1)[1]
+#
+#
+# def get_template(templ_name):
+#     very_root_dir = os.path.dirname(os.path.dirname(wally.__file__))
+#     templ_dir = os.path.join(very_root_dir, 'report_templates')
+#     templ_file = os.path.join(templ_dir, templ_name)
+#     return open(templ_file, 'r').read()
+#
+#
+# def group_by(data, func):
+#     if len(data) < 2:
+#         yield data
+#         return
+#
+#     ndata = [(func(dt), dt) for dt in data]
+#     ndata.sort(key=func)
+#     pkey, dt = ndata[0]
+#     curr_list = [dt]
+#
+#     for key, val in ndata[1:]:
+#         if pkey != key:
+#             yield curr_list
+#             curr_list = [val]
+#         else:
+#             curr_list.append(val)
+#         pkey = key
+#
+#     yield curr_list
+#
+#
+# @report('linearity', 'linearity_test')
+# def linearity_report(processed_results, lab_info, comment):
+#     labels_and_data_mp = collections.defaultdict(lambda: [])
+#     vls = {}
+#
+#     # plot io_time = func(bsize)
+#     for res in processed_results.values():
+#         if res.name.startswith('linearity_test'):
+#             iotimes = [1000. / val for val in res.iops.raw]
+#
+#             op_summ = get_test_summary(res.params)[:3]
+#
+#             labels_and_data_mp[op_summ].append(
+#                 [res.p.blocksize, res.iops.raw, iotimes])
+#
+#             cvls = res.params.vals.copy()
+#             del cvls['blocksize']
+#             del cvls['rw']
+#
+#             cvls.pop('sync', None)
+#             cvls.pop('direct', None)
+#             cvls.pop('buffered', None)
+#
+#             if op_summ not in vls:
+#                 vls[op_summ] = cvls
+#             else:
+#                 assert cvls == vls[op_summ]
+#
+#     all_labels = None
+#     _, ax1 = plt.subplots()
+#     for name, labels_and_data in labels_and_data_mp.items():
+#         labels_and_data.sort(key=lambda x: ssize2b(x[0]))
+#
+#         labels, _, iotimes = zip(*labels_and_data)
+#
+#         if all_labels is None:
+#             all_labels = labels
+#         else:
+#             assert all_labels == labels
+#
+#         plt.boxplot(iotimes)
+#         if len(labels_and_data) > 2 and \
+#            ssize2b(labels_and_data[-2][0]) >= 4096:
+#
+#             xt = range(1, len(labels) + 1)
+#
+#             def io_time(sz, bw, initial_lat):
+#                 return sz / bw + initial_lat
+#
+#             x = numpy.array(map(ssize2b, labels))
+#             y = numpy.array([sum(dt) / len(dt) for dt in iotimes])
+#             popt, _ = scipy.optimize.curve_fit(io_time, x, y, p0=(100., 1.))
+#
+#             y1 = io_time(x, *popt)
+#             plt.plot(xt, y1, linestyle='--',
+#                      label=name + ' LS linear approx')
+#
+#             for idx, (sz, _, _) in enumerate(labels_and_data):
+#                 if ssize2b(sz) >= 4096:
+#                     break
+#
+#             bw = (x[-1] - x[idx]) / (y[-1] - y[idx])
+#             lat = y[-1] - x[-1] / bw
+#             y2 = io_time(x, bw, lat)
+#             plt.plot(xt, y2, linestyle='--',
+#                      label=abbv_name_to_full(name) +
+#                      ' (4k & max) linear approx')
+#
+#     plt.setp(ax1, xticklabels=labels)
+#
+#     plt.xlabel("Block size")
+#     plt.ylabel("IO time, ms")
+#
+#     plt.subplots_adjust(top=0.85)
+#     plt.legend(bbox_to_anchor=(0.5, 1.15),
+#                loc='upper center',
+#                prop={'size': 10}, ncol=2)
+#     plt.grid()
+#     iotime_plot = get_emb_data_svg(plt)
+#     plt.clf()
+#
+#     # plot IOPS = func(bsize)
+#     _, ax1 = plt.subplots()
+#
+#     for name, labels_and_data in labels_and_data_mp.items():
+#         labels_and_data.sort(key=lambda x: ssize2b(x[0]))
+#         _, data, _ = zip(*labels_and_data)
+#         plt.boxplot(data)
+#         avg = [float(sum(arr)) / len(arr) for arr in data]
+#         xt = range(1, len(data) + 1)
+#         plt.plot(xt, avg, linestyle='--',
+#                  label=abbv_name_to_full(name) + " avg")
+#
+#     plt.setp(ax1, xticklabels=labels)
+#     plt.xlabel("Block size")
+#     plt.ylabel("IOPS")
+#     plt.legend(bbox_to_anchor=(0.5, 1.15),
+#                loc='upper center',
+#                prop={'size': 10}, ncol=2)
+#     plt.grid()
+#     plt.subplots_adjust(top=0.85)
+#
+#     iops_plot = get_emb_data_svg(plt)
+#
+#     res = set(get_test_lcheck_params(res) for res in processed_results.values())
+#     ncount = list(set(res.testnodes_count for res in processed_results.values()))
+#     conc = list(set(res.concurence for res in processed_results.values()))
+#
+#     assert len(conc) == 1
+#     assert len(ncount) == 1
+#
+#     descr = {
+#         'vm_count': ncount[0],
+#         'concurence': conc[0],
+#         'oper_descr': ", ".join(res).capitalize()
+#     }
+#
+#     params_map = {'iotime_vs_size': iotime_plot,
+#                   'iops_vs_size': iops_plot,
+#                   'descr': descr}
+#
+#     return get_template('report_linearity.html').format(**params_map)
+#
+#
+# @report('lat_vs_iops', 'lat_vs_iops')
+# def lat_vs_iops(processed_results, lab_info, comment):
+#     lat_iops = collections.defaultdict(lambda: [])
+#     requsted_vs_real = collections.defaultdict(lambda: {})
+#
+#     for res in processed_results.values():
+#         if res.name.startswith('lat_vs_iops'):
+#             lat_iops[res.concurence].append((res.lat,
+#                                              0,
+#                                              res.iops.average,
+#                                              res.iops.deviation))
+#             # lat_iops[res.concurence].append((res.lat.average / 1000.0,
+#             #                                  res.lat.deviation / 1000.0,
+#             #                                  res.iops.average,
+#             #                                  res.iops.deviation))
+#             requested_iops = res.p.rate_iops * res.concurence
+#             requsted_vs_real[res.concurence][requested_iops] = \
+#                 (res.iops.average, res.iops.deviation)
+#
+#     colors = ['red', 'green', 'blue', 'orange', 'magenta', "teal"]
+#     colors_it = iter(colors)
+#     for conc, lat_iops in sorted(lat_iops.items()):
+#         lat, dev, iops, iops_dev = zip(*lat_iops)
+#         plt.errorbar(iops, lat, xerr=iops_dev, yerr=dev, fmt='ro',
+#                      label=str(conc) + " threads",
+#                      color=next(colors_it))
+#
+#     plt.xlabel("IOPS")
+#     plt.ylabel("Latency, ms")
+#     plt.grid()
+#     plt.legend(loc=0)
+#     plt_iops_vs_lat = get_emb_data_svg(plt)
+#     plt.clf()
+#
+#     colors_it = iter(colors)
+#     for conc, req_vs_real in sorted(requsted_vs_real.items()):
+#         req, real = zip(*sorted(req_vs_real.items()))
+#         iops, dev = zip(*real)
+#         plt.errorbar(req, iops, yerr=dev, fmt='ro',
+#                      label=str(conc) + " threads",
+#                      color=next(colors_it))
+#     plt.xlabel("Requested IOPS")
+#     plt.ylabel("Get IOPS")
+#     plt.grid()
+#     plt.legend(loc=0)
+#     plt_iops_vs_requested = get_emb_data_svg(plt)
+#
+#     res1 = processed_results.values()[0]
+#     params_map = {'iops_vs_lat': plt_iops_vs_lat,
+#                   'iops_vs_requested': plt_iops_vs_requested,
+#                   'oper_descr': get_test_lcheck_params(res1).capitalize()}
+#
+#     return get_template('report_iops_vs_lat.html').format(**params_map)
+#
+#
+# def render_all_html(comment, info, lab_description, images, templ_name):
+#     data = info.__dict__.copy()
+#     for name, val in data.items():
+#         if not name.startswith('__'):
+#             if val is None:
+#                 if name in ('direct_iops_w64_max', 'direct_iops_w_max'):
+#                     data[name] = ('-', '-', '-')
+#                 else:
+#                     data[name] = '-'
+#             elif isinstance(val, (int, float, long)):
+#                 data[name] = round_3_digit(val)
+#
+#     data['bw_read_max'] = (data['bw_read_max'][0] // 1024,
+#                            data['bw_read_max'][1],
+#                            data['bw_read_max'][2])
+#
+#     data['bw_write_max'] = (data['bw_write_max'][0] // 1024,
+#                             data['bw_write_max'][1],
+#                             data['bw_write_max'][2])
+#
+#     images.update(data)
+#     templ = get_template(templ_name)
+#     return templ.format(lab_info=lab_description,
+#                         comment=comment,
+#                         **images)
+#
+#
+# def io_chart(title, concurence,
+#              latv, latv_min, latv_max,
+#              iops_or_bw, iops_or_bw_err,
+#              legend,
+#              log_iops=False,
+#              log_lat=False,
+#              boxplots=False,
+#              latv_50=None,
+#              latv_95=None,
+#              error2=None):
+#
+#     matplotlib.rcParams.update({'font.size': 10})
+#     points = " MiBps" if legend == 'BW' else ""
+#     lc = len(concurence)
+#     width = 0.35
+#     xt = range(1, lc + 1)
+#
+#     op_per_vm = [v / (vm * th) for v, (vm, th) in zip(iops_or_bw, concurence)]
+#     fig, p1 = plt.subplots()
+#     xpos = [i - width / 2 for i in xt]
+#
+#     p1.bar(xpos, iops_or_bw,
+#            width=width,
+#            color='y',
+#            label=legend)
+#
+#     err1_leg = None
+#     for pos, y, err in zip(xpos, iops_or_bw, iops_or_bw_err):
+#         err1_leg = p1.errorbar(pos + width / 2,
+#                                y,
+#                                err,
+#                                color='magenta')
+#
+#     err2_leg = None
+#     if error2 is not None:
+#         for pos, y, err in zip(xpos, iops_or_bw, error2):
+#             err2_leg = p1.errorbar(pos + width / 2 + 0.08,
+#                                    y,
+#                                    err,
+#                                    lw=2,
+#                                    alpha=0.5,
+#                                    color='teal')
+#
+#     p1.grid(True)
+#     p1.plot(xt, op_per_vm, '--', label=legend + "/thread", color='black')
+#     handles1, labels1 = p1.get_legend_handles_labels()
+#
+#     handles1 += [err1_leg]
+#     labels1 += ["95% conf"]
+#
+#     if err2_leg is not None:
+#         handles1 += [err2_leg]
+#         labels1 += ["95% dev"]
+#
+#     p2 = p1.twinx()
+#
+#     if latv_50 is None:
+#         p2.plot(xt, latv_max, label="lat max")
+#         p2.plot(xt, latv, label="lat avg")
+#         p2.plot(xt, latv_min, label="lat min")
+#     else:
+#         p2.plot(xt, latv_50, label="lat med")
+#         p2.plot(xt, latv_95, label="lat 95%")
+#
+#     plt.xlim(0.5, lc + 0.5)
+#     plt.xticks(xt, ["{0} * {1}".format(vm, th) for (vm, th) in concurence])
+#     p1.set_xlabel("VM Count * Thread per VM")
+#     p1.set_ylabel(legend + points)
+#     p2.set_ylabel("Latency ms")
+#     plt.title(title)
+#     handles2, labels2 = p2.get_legend_handles_labels()
+#
+#     plt.legend(handles1 + handles2, labels1 + labels2,
+#                loc='center left', bbox_to_anchor=(1.1, 0.81))
+#
+#     if log_iops:
+#         p1.set_yscale('log')
+#
+#     if log_lat:
+#         p2.set_yscale('log')
+#
+#     plt.subplots_adjust(right=0.68)
+#
+#     return get_emb_data_svg(plt)
+#
+#
+# def make_plots(processed_results, plots):
+#     """
+#     processed_results: [PerfInfo]
+#     plots = [(test_name_prefix:str, fname:str, description:str)]
+#     """
+#     files = {}
+#     for name_pref, fname, desc in plots:
+#         chart_data = []
+#
+#         for res in processed_results:
+#             summ = res.name + "_" + res.summary
+#             if summ.startswith(name_pref):
+#                 chart_data.append(res)
+#
+#         if len(chart_data) == 0:
+#             raise ValueError("Can't found any date for " + name_pref)
+#
+#         use_bw = ssize2b(chart_data[0].p.blocksize) > 16 * 1024
+#
+#         chart_data.sort(key=lambda x: x.params['vals']['numjobs'])
+#
+#         lat = None
+#         lat_min = None
+#         lat_max = None
+#
+#         lat_50 = [x.lat_50 for x in chart_data]
+#         lat_95 = [x.lat_95 for x in chart_data]
+#
+#         lat_diff_max = max(x.lat_95 / x.lat_50 for x in chart_data)
+#         lat_log_scale = (lat_diff_max > 10)
+#
+#         testnodes_count = x.testnodes_count
+#         concurence = [(testnodes_count, x.concurence)
+#                       for x in chart_data]
+#
+#         if use_bw:
+#             data = [x.bw.average / 1000 for x in chart_data]
+#             data_conf = [x.bw.confidence / 1000 for x in chart_data]
+#             data_dev = [x.bw.deviation * 2.5 / 1000 for x in chart_data]
+#             name = "BW"
+#         else:
+#             data = [x.iops.average for x in chart_data]
+#             data_conf = [x.iops.confidence for x in chart_data]
+#             data_dev = [x.iops.deviation * 2 for x in chart_data]
+#             name = "IOPS"
+#
+#         fc = io_chart(title=desc,
+#                       concurence=concurence,
+#
+#                       latv=lat,
+#                       latv_min=lat_min,
+#                       latv_max=lat_max,
+#
+#                       iops_or_bw=data,
+#                       iops_or_bw_err=data_conf,
+#
+#                       legend=name,
+#                       log_lat=lat_log_scale,
+#
+#                       latv_50=lat_50,
+#                       latv_95=lat_95,
+#
+#                       error2=data_dev)
+#         files[fname] = fc
+#
+#     return files
+#
+#
+# def find_max_where(processed_results, sync_mode, blocksize, rw, iops=True):
+#     result = None
+#     attr = 'iops' if iops else 'bw'
+#     for measurement in processed_results:
+#         ok = measurement.sync_mode == sync_mode
+#         ok = ok and (measurement.p.blocksize == blocksize)
+#         ok = ok and (measurement.p.rw == rw)
+#
+#         if ok:
+#             field = getattr(measurement, attr)
+#
+#             if result is None:
+#                 result = field
+#             elif field.average > result.average:
+#                 result = field
+#
+#     return result
+#
+#
+# def get_disk_info(processed_results):
+#     di = DiskInfo()
+#     di.direct_iops_w_max = find_max_where(processed_results,
+#                                           'd', '4k', 'randwrite')
+#     di.direct_iops_r_max = find_max_where(processed_results,
+#                                           'd', '4k', 'randread')
+#
+#     di.direct_iops_w64_max = find_max_where(processed_results,
+#                                             'd', '64k', 'randwrite')
+#
+#     for sz in ('16m', '64m'):
+#         di.bw_write_max = find_max_where(processed_results,
+#                                          'd', sz, 'randwrite', False)
+#         if di.bw_write_max is not None:
+#             break
+#
+#     if di.bw_write_max is None:
+#         for sz in ('1m', '2m', '4m', '8m'):
+#             di.bw_write_max = find_max_where(processed_results,
+#                                              'd', sz, 'write', False)
+#             if di.bw_write_max is not None:
+#                 break
+#
+#     for sz in ('16m', '64m'):
+#         di.bw_read_max = find_max_where(processed_results,
+#                                         'd', sz, 'randread', False)
+#         if di.bw_read_max is not None:
+#             break
+#
+#     if di.bw_read_max is None:
+#         di.bw_read_max = find_max_where(processed_results,
+#                                         'd', '1m', 'read', False)
+#
+#     rws4k_iops_lat_th = []
+#     for res in processed_results:
+#         if res.sync_mode in 'xs' and res.p.blocksize == '4k':
+#             if res.p.rw != 'randwrite':
+#                 continue
+#             rws4k_iops_lat_th.append((res.iops.average,
+#                                       res.lat,
+#                                       # res.lat.average,
+#                                       res.concurence))
+#
+#     rws4k_iops_lat_th.sort(key=lambda x: x[2])
+#
+#     latv = [lat for _, lat, _ in rws4k_iops_lat_th]
+#
+#     for tlat in [10, 30, 100]:
+#         pos = bisect.bisect_left(latv, tlat)
+#         if 0 == pos:
+#             setattr(di, 'rws4k_{}ms'.format(tlat), 0)
+#         elif pos == len(latv):
+#             iops3, _, _ = rws4k_iops_lat_th[-1]
+#             iops3 = int(round_3_digit(iops3))
+#             setattr(di, 'rws4k_{}ms'.format(tlat), ">=" + str(iops3))
+#         else:
+#             lat1 = latv[pos - 1]
+#             lat2 = latv[pos]
+#
+#             iops1, _, th1 = rws4k_iops_lat_th[pos - 1]
+#             iops2, _, th2 = rws4k_iops_lat_th[pos]
+#
+#             th_lat_coef = (th2 - th1) / (lat2 - lat1)
+#             th3 = th_lat_coef * (tlat - lat1) + th1
+#
+#             th_iops_coef = (iops2 - iops1) / (th2 - th1)
+#             iops3 = th_iops_coef * (th3 - th1) + iops1
+#             iops3 = int(round_3_digit(iops3))
+#             setattr(di, 'rws4k_{}ms'.format(tlat), iops3)
+#
+#     hdi = DiskInfo()
+#
+#     def pp(x):
+#         med, conf = x.rounded_average_conf()
+#         conf_perc = int(float(conf) / med * 100)
+#         dev_perc = int(float(x.deviation) / med * 100)
+#         return (round_3_digit(med), conf_perc, dev_perc)
+#
+#     hdi.direct_iops_r_max = pp(di.direct_iops_r_max)
+#
+#     if di.direct_iops_w_max is not None:
+#         hdi.direct_iops_w_max = pp(di.direct_iops_w_max)
+#     else:
+#         hdi.direct_iops_w_max = None
+#
+#     if di.direct_iops_w64_max is not None:
+#         hdi.direct_iops_w64_max = pp(di.direct_iops_w64_max)
+#     else:
+#         hdi.direct_iops_w64_max = None
+#
+#     hdi.bw_write_max = pp(di.bw_write_max)
+#     hdi.bw_read_max = pp(di.bw_read_max)
+#
+#     hdi.rws4k_10ms = di.rws4k_10ms if 0 != di.rws4k_10ms else None
+#     hdi.rws4k_30ms = di.rws4k_30ms if 0 != di.rws4k_30ms else None
+#     hdi.rws4k_100ms = di.rws4k_100ms if 0 != di.rws4k_100ms else None
+#     return hdi
+#
+#
+# @report('hdd', 'hdd')
+# def make_hdd_report(processed_results, lab_info, comment):
+#     plots = [
+#         ('hdd_rrd4k', 'rand_read_4k', 'Random read 4k direct IOPS'),
+#         ('hdd_rwx4k', 'rand_write_4k', 'Random write 4k sync IOPS')
+#     ]
+#     perf_infos = [res.disk_perf_info() for res in processed_results]
+#     images = make_plots(perf_infos, plots)
+#     di = get_disk_info(perf_infos)
+#     return render_all_html(comment, di, lab_info, images, "report_hdd.html")
+#
+#
+# @report('cinder_iscsi', 'cinder_iscsi')
+# def make_cinder_iscsi_report(processed_results, lab_info, comment):
+#     plots = [
+#         ('cinder_iscsi_rrd4k', 'rand_read_4k', 'Random read 4k direct IOPS'),
+#         ('cinder_iscsi_rwx4k', 'rand_write_4k', 'Random write 4k sync IOPS')
+#     ]
+#     perf_infos = [res.disk_perf_info() for res in processed_results]
+#     try:
+#         images = make_plots(perf_infos, plots)
+#     except ValueError:
+#         plots = [
+#             ('cinder_iscsi_rrd4k', 'rand_read_4k', 'Random read 4k direct IOPS'),
+#             ('cinder_iscsi_rws4k', 'rand_write_4k', 'Random write 4k sync IOPS')
+#         ]
+#         images = make_plots(perf_infos, plots)
+#     di = get_disk_info(perf_infos)
+#
+#     return render_all_html(comment, di, lab_info, images, "report_cinder_iscsi.html")
+#
+#
+# @report('ceph', 'ceph')
+# def make_ceph_report(processed_results, lab_info, comment):
+#     plots = [
+#         ('ceph_rrd4k', 'rand_read_4k', 'Random read 4k direct IOPS'),
+#         ('ceph_rws4k', 'rand_write_4k', 'Random write 4k sync IOPS'),
+#         ('ceph_rrd16m', 'rand_read_16m', 'Random read 16m direct MiBps'),
+#         ('ceph_rwd16m', 'rand_write_16m',
+#          'Random write 16m direct MiBps'),
+#     ]
+#
+#     perf_infos = [res.disk_perf_info() for res in processed_results]
+#     images = make_plots(perf_infos, plots)
+#     di = get_disk_info(perf_infos)
+#     return render_all_html(comment, di, lab_info, images, "report_ceph.html")
+#
+#
+# @report('mixed', 'mixed')
+# def make_mixed_report(processed_results, lab_info, comment):
+#     #
+#     # IOPS(X% read) = 100 / ( X / IOPS_W + (100 - X) / IOPS_R )
+#     #
+#
+#     perf_infos = [res.disk_perf_info() for res in processed_results]
+#     mixed = collections.defaultdict(lambda: [])
+#
+#     is_ssd = False
+#     for res in perf_infos:
+#         if res.name.startswith('mixed'):
+#             if res.name.startswith('mixed-ssd'):
+#                 is_ssd = True
+#             mixed[res.concurence].append((res.p.rwmixread,
+#                                           res.lat,
+#                                           0,
+#                                           # res.lat.average / 1000.0,
+#                                           # res.lat.deviation / 1000.0,
+#                                           res.iops.average,
+#                                           res.iops.deviation))
+#
+#     if len(mixed) == 0:
+#         raise ValueError("No mixed load found")
+#
+#     fig, p1 = plt.subplots()
+#     p2 = p1.twinx()
+#
+#     colors = ['red', 'green', 'blue', 'orange', 'magenta', "teal"]
+#     colors_it = iter(colors)
+#     for conc, mix_lat_iops in sorted(mixed.items()):
+#         mix_lat_iops = sorted(mix_lat_iops)
+#         read_perc, lat, dev, iops, iops_dev = zip(*mix_lat_iops)
+#         p1.errorbar(read_perc, iops, color=next(colors_it),
+#                     yerr=iops_dev, label=str(conc) + " th")
+#
+#         p2.errorbar(read_perc, lat, color=next(colors_it),
+#                     ls='--', yerr=dev, label=str(conc) + " th lat")
+#
+#     if is_ssd:
+#         p1.set_yscale('log')
+#         p2.set_yscale('log')
+#
+#     p1.set_xlim(-5, 105)
+#
+#     read_perc = set(read_perc)
+#     read_perc.add(0)
+#     read_perc.add(100)
+#     read_perc = sorted(read_perc)
+#
+#     plt.xticks(read_perc, map(str, read_perc))
+#
+#     p1.grid(True)
+#     p1.set_xlabel("% of reads")
+#     p1.set_ylabel("Mixed IOPS")
+#     p2.set_ylabel("Latency, ms")
+#
+#     handles1, labels1 = p1.get_legend_handles_labels()
+#     handles2, labels2 = p2.get_legend_handles_labels()
+#     plt.subplots_adjust(top=0.85)
+#     plt.legend(handles1 + handles2, labels1 + labels2,
+#                bbox_to_anchor=(0.5, 1.15),
+#                loc='upper center',
+#                prop={'size': 12}, ncol=3)
+#     plt.show()
+#
+#
+# def make_load_report(idx, results_dir, fname):
+#     dpath = os.path.join(results_dir, "io_" + str(idx))
+#     files = sorted(os.listdir(dpath))
+#     gf = lambda x: "_".join(x.rsplit(".", 1)[0].split('_')[:3])
+#
+#     for key, group in itertools.groupby(files, gf):
+#         fname = os.path.join(dpath, key + ".fio")
+#
+#         cfgs = list(parse_all_in_1(open(fname).read(), fname))
+#
+#         fname = os.path.join(dpath, key + "_lat.log")
+#
+#         curr = []
+#         arrays = []
+#
+#         with open(fname) as fd:
+#             for offset, lat, _, _ in csv.reader(fd):
+#                 offset = int(offset)
+#                 lat = int(lat)
+#                 if len(curr) > 0 and curr[-1][0] > offset:
+#                     arrays.append(curr)
+#                     curr = []
+#                 curr.append((offset, lat))
+#             arrays.append(curr)
+#         conc = int(cfgs[0].vals.get('numjobs', 1))
+#
+#         if conc != 5:
+#             continue
+#
+#         assert len(arrays) == len(cfgs) * conc
+#
+#         garrays = [[(0, 0)] for _ in range(conc)]
+#
+#         for offset in range(len(cfgs)):
+#             for acc, new_arr in zip(garrays, arrays[offset * conc:(offset + 1) * conc]):
+#                 last = acc[-1][0]
+#                 for off, lat in new_arr:
+#                     acc.append((off / 1000. + last, lat / 1000.))
+#
+#         for cfg, arr in zip(cfgs, garrays):
+#             plt.plot(*zip(*arr[1:]))
+#         plt.show()
+#         exit(1)
+#
+#
+# def make_io_report(dinfo, comment, path, lab_info=None):
+#     lab_info = {
+#         "total_disk": "None",
+#         "total_memory": "None",
+#         "nodes_count": "None",
+#         "processor_count": "None"
+#     }
+#
+#     try:
+#         res_fields = sorted(v.name for v in dinfo)
+#
+#         found = False
+#         for fields, name, func in report_funcs:
+#             for field in fields:
+#                 pos = bisect.bisect_left(res_fields, field)
+#
+#                 if pos == len(res_fields):
+#                     break
+#
+#                 if not res_fields[pos].startswith(field):
+#                     break
+#             else:
+#                 found = True
+#                 hpath = path.format(name)
+#
+#                 try:
+#                     report = func(dinfo, lab_info, comment)
+#                 except:
+#                     logger.exception("Diring {0} report generation".format(name))
+#                     continue
+#
+#                 if report is not None:
+#                     try:
+#                         with open(hpath, "w") as fd:
+#                             fd.write(report)
+#                     except:
+#                         logger.exception("Diring saving {0} report".format(name))
+#                         continue
+#                     logger.info("Report {0} saved into {1}".format(name, hpath))
+#                 else:
+#                     logger.warning("No report produced by {0!r}".format(name))
+#
+#         if not found:
+#             logger.warning("No report generator found for this load")
+#
+#     except Exception as exc:
+#         import traceback
+#         traceback.print_exc()
+#         logger.error("Failed to generate html report:" + str(exc))
+#
+#
+#     # @classmethod
+#     # def prepare_data(cls, results) -> List[Dict[str, Any]]:
+#     #     """create a table with io performance report for console"""
+#     #
+#     #     def key_func(data: FioRunResult) -> Tuple[str, str, str, str, int]:
+#     #         tpl = data.summary_tpl()
+#     #         return (data.name,
+#     #                 tpl.oper,
+#     #                 tpl.mode,
+#     #                 ssize2b(tpl.bsize),
+#     #                 int(tpl.th_count) * int(tpl.vm_count))
+#     #     res = []
+#     #
+#     #     for item in sorted(results, key=key_func):
+#     #         test_dinfo = item.disk_perf_info()
+#     #         testnodes_count = len(item.config.nodes)
+#     #
+#     #         iops, _ = test_dinfo.iops.rounded_average_conf()
+#     #
+#     #         if test_dinfo.iops_sys is not None:
+#     #             iops_sys, iops_sys_conf = test_dinfo.iops_sys.rounded_average_conf()
+#     #             _, iops_sys_dev = test_dinfo.iops_sys.rounded_average_dev()
+#     #             iops_sys_per_vm = round_3_digit(iops_sys / testnodes_count)
+#     #             iops_sys = round_3_digit(iops_sys)
+#     #         else:
+#     #             iops_sys = None
+#     #             iops_sys_per_vm = None
+#     #             iops_sys_dev = None
+#     #             iops_sys_conf = None
+#     #
+#     #         bw, bw_conf = test_dinfo.bw.rounded_average_conf()
+#     #         _, bw_dev = test_dinfo.bw.rounded_average_dev()
+#     #         conf_perc = int(round(bw_conf * 100 / bw))
+#     #         dev_perc = int(round(bw_dev * 100 / bw))
+#     #
+#     #         lat_50 = round_3_digit(int(test_dinfo.lat_50))
+#     #         lat_95 = round_3_digit(int(test_dinfo.lat_95))
+#     #         lat_avg = round_3_digit(int(test_dinfo.lat_avg))
+#     #
+#     #         iops_per_vm = round_3_digit(iops / testnodes_count)
+#     #         bw_per_vm = round_3_digit(bw / testnodes_count)
+#     #
+#     #         iops = round_3_digit(iops)
+#     #         bw = round_3_digit(bw)
+#     #
+#     #         summ = "{0.oper}{0.mode} {0.bsize:>4} {0.th_count:>3}th {0.vm_count:>2}vm".format(item.summary_tpl())
+#     #
+#     #         res.append({"name": key_func(item)[0],
+#     #                     "key": key_func(item)[:4],
+#     #                     "summ": summ,
+#     #                     "iops": int(iops),
+#     #                     "bw": int(bw),
+#     #                     "conf": str(conf_perc),
+#     #                     "dev": str(dev_perc),
+#     #                     "iops_per_vm": int(iops_per_vm),
+#     #                     "bw_per_vm": int(bw_per_vm),
+#     #                     "lat_50": lat_50,
+#     #                     "lat_95": lat_95,
+#     #                     "lat_avg": lat_avg,
+#     #
+#     #                     "iops_sys": iops_sys,
+#     #                     "iops_sys_per_vm": iops_sys_per_vm,
+#     #                     "sys_conf": iops_sys_conf,
+#     #                     "sys_dev": iops_sys_dev})
+#     #
+#     #     return res
+#     #
+#     # Field = collections.namedtuple("Field", ("header", "attr", "allign", "size"))
+#     # fiels_and_header = [
+#     #     Field("Name",           "name",        "l",  7),
+#     #     Field("Description",    "summ",        "l", 19),
+#     #     Field("IOPS\ncum",      "iops",        "r",  3),
+#     #     # Field("IOPS_sys\ncum",  "iops_sys",    "r",  3),
+#     #     Field("KiBps\ncum",     "bw",          "r",  6),
+#     #     Field("Cnf %\n95%",     "conf",        "r",  3),
+#     #     Field("Dev%",           "dev",         "r",  3),
+#     #     Field("iops\n/vm",      "iops_per_vm", "r",  3),
+#     #     Field("KiBps\n/vm",     "bw_per_vm",   "r",  6),
+#     #     Field("lat ms\nmedian", "lat_50",      "r",  3),
+#     #     Field("lat ms\n95%",    "lat_95",      "r",  3),
+#     #     Field("lat\navg",       "lat_avg",     "r",  3),
+#     # ]
+#     #
+#     # fiels_and_header_dct = dict((item.attr, item) for item in fiels_and_header)
+#     #
+#     # @classmethod
+#     # def format_for_console(cls, results) -> str:
+#     #     """create a table with io performance report for console"""
+#     #
+#     #     tab = texttable.Texttable(max_width=120)
+#     #     tab.set_deco(tab.HEADER | tab.VLINES | tab.BORDER)
+#     #     tab.set_cols_align([f.allign for f in cls.fiels_and_header])
+#     #     sep = ["-" * f.size for f in cls.fiels_and_header]
+#     #     tab.header([f.header for f in cls.fiels_and_header])
+#     #     prev_k = None
+#     #     for item in cls.prepare_data(results):
+#     #         if prev_k is not None:
+#     #             if prev_k != item["key"]:
+#     #                 tab.add_row(sep)
+#     #
+#     #         prev_k = item["key"]
+#     #         tab.add_row([item[f.attr] for f in cls.fiels_and_header])
+#     #
+#     #     return tab.draw()
+#     #
+#     # @classmethod
+#     # def format_diff_for_console(cls, list_of_results: List[Any]) -> str:
+#     #     """create a table with io performance report for console"""
+#     #
+#     #     tab = texttable.Texttable(max_width=200)
+#     #     tab.set_deco(tab.HEADER | tab.VLINES | tab.BORDER)
+#     #
+#     #     header = [
+#     #         cls.fiels_and_header_dct["name"].header,
+#     #         cls.fiels_and_header_dct["summ"].header,
+#     #     ]
+#     #     allign = ["l", "l"]
+#     #
+#     #     header.append("IOPS ~ Cnf% ~ Dev%")
+#     #     allign.extend(["r"] * len(list_of_results))
+#     #     header.extend(
+#     #         "IOPS_{0} %".format(i + 2) for i in range(len(list_of_results[1:]))
+#     #     )
+#     #
+#     #     header.append("BW")
+#     #     allign.extend(["r"] * len(list_of_results))
+#     #     header.extend(
+#     #         "BW_{0} %".format(i + 2) for i in range(len(list_of_results[1:]))
+#     #     )
+#     #
+#     #     header.append("LAT")
+#     #     allign.extend(["r"] * len(list_of_results))
+#     #     header.extend(
+#     #         "LAT_{0}".format(i + 2) for i in range(len(list_of_results[1:]))
+#     #     )
+#     #
+#     #     tab.header(header)
+#     #     sep = ["-" * 3] * len(header)
+#     #     processed_results = map(cls.prepare_data, list_of_results)
+#     #
+#     #     key2results = []
+#     #     for res in processed_results:
+#     #         key2results.append(dict(
+#     #             ((item["name"], item["summ"]), item) for item in res
+#     #         ))
+#     #
+#     #     prev_k = None
+#     #     iops_frmt = "{0[iops]} ~ {0[conf]:>2} ~ {0[dev]:>2}"
+#     #     for item in processed_results[0]:
+#     #         if prev_k is not None:
+#     #             if prev_k != item["key"]:
+#     #                 tab.add_row(sep)
+#     #
+#     #         prev_k = item["key"]
+#     #
+#     #         key = (item['name'], item['summ'])
+#     #         line = list(key)
+#     #         base = key2results[0][key]
+#     #
+#     #         line.append(iops_frmt.format(base))
+#     #
+#     #         for test_results in key2results[1:]:
+#     #             val = test_results.get(key)
+#     #             if val is None:
+#     #                 line.append("-")
+#     #             elif base['iops'] == 0:
+#     #                 line.append("Nan")
+#     #             else:
+#     #                 prc_val = {'dev': val['dev'], 'conf': val['conf']}
+#     #                 prc_val['iops'] = int(100 * val['iops'] / base['iops'])
+#     #                 line.append(iops_frmt.format(prc_val))
+#     #
+#     #         line.append(base['bw'])
+#     #
+#     #         for test_results in key2results[1:]:
+#     #             val = test_results.get(key)
+#     #             if val is None:
+#     #                 line.append("-")
+#     #             elif base['bw'] == 0:
+#     #                 line.append("Nan")
+#     #             else:
+#     #                 line.append(int(100 * val['bw'] / base['bw']))
+#     #
+#     #         for test_results in key2results:
+#     #             val = test_results.get(key)
+#     #             if val is None:
+#     #                 line.append("-")
+#     #             else:
+#     #                 line.append("{0[lat_50]} - {0[lat_95]}".format(val))
+#     #
+#     #         tab.add_row(line)
+#     #
+#     #     tab.set_cols_align(allign)
+#     #     return tab.draw()
+#
+#
+# # READ_IOPS_DISCSTAT_POS = 3
+# # WRITE_IOPS_DISCSTAT_POS = 7
+# #
+# #
+# # def load_sys_log_file(ftype: str, fname: str) -> TimeSeriesValue:
+# #     assert ftype == 'iops'
+# #     pval = None
+# #     with open(fname) as fd:
+# #         iops = []
+# #         for ln in fd:
+# #             params = ln.split()
+# #             cval = int(params[WRITE_IOPS_DISCSTAT_POS]) + \
+# #                 int(params[READ_IOPS_DISCSTAT_POS])
+# #             if pval is not None:
+# #                 iops.append(cval - pval)
+# #             pval = cval
+# #
+# #     vals = [(idx * 1000, val) for idx, val in enumerate(iops)]
+# #     return TimeSeriesValue(vals)
+# #
+# #
+# # def load_test_results(folder: str, run_num: int) -> 'FioRunResult':
+# #     res = {}
+# #     params = None
+# #
+# #     fn = os.path.join(folder, str(run_num) + '_params.yaml')
+# #     params = yaml.load(open(fn).read())
+# #
+# #     conn_ids_set = set()
+# #     rr = r"{}_(?P<conn_id>.*?)_(?P<type>[^_.]*)\.\d+\.log$".format(run_num)
+# #     for fname in os.listdir(folder):
+# #         rm = re.match(rr, fname)
+# #         if rm is None:
+# #             continue
+# #
+# #         conn_id_s = rm.group('conn_id')
+# #         conn_id = conn_id_s.replace('_', ':')
+# #         ftype = rm.group('type')
+# #
+# #         if ftype not in ('iops', 'bw', 'lat'):
+# #             continue
+# #
+# #         ts = load_fio_log_file(os.path.join(folder, fname))
+# #         res.setdefault(ftype, {}).setdefault(conn_id, []).append(ts)
+# #
+# #         conn_ids_set.add(conn_id)
+# #
+# #     rr = r"{}_(?P<conn_id>.*?)_(?P<type>[^_.]*)\.sys\.log$".format(run_num)
+# #     for fname in os.listdir(folder):
+# #         rm = re.match(rr, fname)
+# #         if rm is None:
+# #             continue
+# #
+# #         conn_id_s = rm.group('conn_id')
+# #         conn_id = conn_id_s.replace('_', ':')
+# #         ftype = rm.group('type')
+# #
+# #         if ftype not in ('iops', 'bw', 'lat'):
+# #             continue
+# #
+# #         ts = load_sys_log_file(ftype, os.path.join(folder, fname))
+# #         res.setdefault(ftype + ":sys", {}).setdefault(conn_id, []).append(ts)
+# #
+# #         conn_ids_set.add(conn_id)
+# #
+# #     mm_res = {}
+# #
+# #     if len(res) == 0:
+# #         raise ValueError("No data was found")
+# #
+# #     for key, data in res.items():
+# #         conn_ids = sorted(conn_ids_set)
+# #         awail_ids = [conn_id for conn_id in conn_ids if conn_id in data]
+# #         matr = [data[conn_id] for conn_id in awail_ids]
+# #         mm_res[key] = MeasurementMatrix(matr, awail_ids)
+# #
+# #     raw_res = {}
+# #     for conn_id in conn_ids:
+# #         fn = os.path.join(folder, "{0}_{1}_rawres.json".format(run_num, conn_id_s))
+# #
+# #         # remove message hack
+# #         fc = "{" + open(fn).read().split('{', 1)[1]
+# #         raw_res[conn_id] = json.loads(fc)
+# #
+# #     fio_task = FioJobSection(params['name'])
+# #     fio_task.vals.update(params['vals'])
+# #
+# #     config = TestConfig('io', params, None, params['nodes'], folder, None)
+# #     return FioRunResult(config, fio_task, mm_res, raw_res, params['intervals'], run_num)
+# #
+#
+# # class DiskPerfInfo:
+# #     def __init__(self, name: str, summary: str, params: Dict[str, Any], testnodes_count: int) -> None:
+# #         self.name = name
+# #         self.bw = None
+# #         self.iops = None
+# #         self.lat = None
+# #         self.lat_50 = None
+# #         self.lat_95 = None
+# #         self.lat_avg = None
+# #
+# #         self.raw_bw = []
+# #         self.raw_iops = []
+# #         self.raw_lat = []
+# #
+# #         self.params = params
+# #         self.testnodes_count = testnodes_count
+# #         self.summary = summary
+# #
+# #         self.sync_mode = get_test_sync_mode(self.params['vals'])
+# #         self.concurence = self.params['vals'].get('numjobs', 1)
+# #
+# #
+# # class IOTestResults:
+# #     def __init__(self, suite_name: str, fio_results: 'FioRunResult', log_directory: str):
+# #         self.suite_name = suite_name
+# #         self.fio_results = fio_results
+# #         self.log_directory = log_directory
+# #
+# #     def __iter__(self):
+# #         return iter(self.fio_results)
+# #
+# #     def __len__(self):
+# #         return len(self.fio_results)
+# #
+# #     def get_yamable(self) -> Dict[str, List[str]]:
+# #         items = [(fio_res.summary(), fio_res.idx) for fio_res in self]
+# #         return {self.suite_name: [self.log_directory] + items}
+#
+#
+# # class FioRunResult(TestResults):
+# #     """
+# #     Fio run results
+# #     config: TestConfig
+# #     fio_task: FioJobSection
+# #     ts_results: {str: MeasurementMatrix[TimeSeriesValue]}
+# #     raw_result: ????
+# #     run_interval:(float, float) - test tun time, used for sensors
+# #     """
+# #     def __init__(self, config, fio_task, ts_results, raw_result, run_interval, idx):
+# #
+# #         self.name = fio_task.name.rsplit("_", 1)[0]
+# #         self.fio_task = fio_task
+# #         self.idx = idx
+# #
+# #         self.bw = ts_results['bw']
+# #         self.lat = ts_results['lat']
+# #         self.iops = ts_results['iops']
+# #
+# #         if 'iops:sys' in ts_results:
+# #             self.iops_sys = ts_results['iops:sys']
+# #         else:
+# #             self.iops_sys = None
+# #
+# #         res = {"bw": self.bw,
+# #                "lat": self.lat,
+# #                "iops": self.iops,
+# #                "iops:sys": self.iops_sys}
+# #
+# #         self.sensors_data = None
+# #         self._pinfo = None
+# #         TestResults.__init__(self, config, res, raw_result, run_interval)
+# #
+# #     def get_params_from_fio_report(self):
+# #         nodes = self.bw.connections_ids
+# #
+# #         iops = [self.raw_result[node]['jobs'][0]['mixed']['iops'] for node in nodes]
+# #         total_ios = [self.raw_result[node]['jobs'][0]['mixed']['total_ios'] for node in nodes]
+# #         runtime = [self.raw_result[node]['jobs'][0]['mixed']['runtime'] / 1000 for node in nodes]
+# #         flt_iops = [float(ios) / rtime for ios, rtime in zip(total_ios, runtime)]
+# #
+# #         bw = [self.raw_result[node]['jobs'][0]['mixed']['bw'] for node in nodes]
+# #         total_bytes = [self.raw_result[node]['jobs'][0]['mixed']['io_bytes'] for node in nodes]
+# #         flt_bw = [float(tbytes) / rtime for tbytes, rtime in zip(total_bytes, runtime)]
+# #
+# #         return {'iops': iops,
+# #                 'flt_iops': flt_iops,
+# #                 'bw': bw,
+# #                 'flt_bw': flt_bw}
+# #
+# #     def summary(self):
+# #         return get_test_summary(self.fio_task, len(self.config.nodes))
+# #
+# #     def summary_tpl(self):
+# #         return get_test_summary_tuple(self.fio_task, len(self.config.nodes))
+# #
+# #     def get_lat_perc_50_95_multy(self):
+# #         lat_mks = collections.defaultdict(lambda: 0)
+# #         num_res = 0
+# #
+# #         for result in self.raw_result.values():
+# #             num_res += len(result['jobs'])
+# #             for job_info in result['jobs']:
+# #                 for k, v in job_info['latency_ms'].items():
+# #                     if isinstance(k, basestring) and k.startswith('>='):
+# #                         lat_mks[int(k[2:]) * 1000] += v
+# #                     else:
+# #                         lat_mks[int(k) * 1000] += v
+# #
+# #                 for k, v in job_info['latency_us'].items():
+# #                     lat_mks[int(k)] += v
+# #
+# #         for k, v in lat_mks.items():
+# #             lat_mks[k] = float(v) / num_res
+# #         return get_lat_perc_50_95(lat_mks)
+# #
+# #     def disk_perf_info(self, avg_interval=2.0):
+# #
+# #         if self._pinfo is not None:
+# #             return self._pinfo
+# #
+# #         testnodes_count = len(self.config.nodes)
+# #
+# #         pinfo = DiskPerfInfo(self.name,
+# #                              self.summary(),
+# #                              self.params,
+# #                              testnodes_count)
+# #
+# #         def prepare(data, drop=1):
+# #             if data is None:
+# #                 return data
+# #
+# #             res = []
+# #             for ts_data in data:
+# #                 if ts_data.average_interval() < avg_interval:
+# #                     ts_data = ts_data.derived(avg_interval)
+# #
+# #                 # drop last value on bounds
+# #                 # as they may contains ranges without activities
+# #                 assert len(ts_data.values) >= drop + 1, str(drop) + " " + str(ts_data.values)
+# #
+# #                 if drop > 0:
+# #                     res.append(ts_data.values[:-drop])
+# #                 else:
+# #                     res.append(ts_data.values)
+# #
+# #             return res
+# #
+# #         def agg_data(matr):
+# #             arr = sum(matr, [])
+# #             min_len = min(map(len, arr))
+# #             res = []
+# #             for idx in range(min_len):
+# #                 res.append(sum(dt[idx] for dt in arr))
+# #             return res
+# #
+# #         pinfo.raw_lat = map(prepare, self.lat.per_vm())
+# #         num_th = sum(map(len, pinfo.raw_lat))
+# #         lat_avg = [val / num_th for val in agg_data(pinfo.raw_lat)]
+# #         pinfo.lat_avg = data_property(lat_avg).average / 1000  # us to ms
+# #
+# #         pinfo.lat_50, pinfo.lat_95 = self.get_lat_perc_50_95_multy()
+# #         pinfo.lat = pinfo.lat_50
+# #
+# #         pinfo.raw_bw = map(prepare, self.bw.per_vm())
+# #         pinfo.raw_iops = map(prepare, self.iops.per_vm())
+# #
+# #         if self.iops_sys is not None:
+# #             pinfo.raw_iops_sys = map(prepare, self.iops_sys.per_vm())
+# #             pinfo.iops_sys = data_property(agg_data(pinfo.raw_iops_sys))
+# #         else:
+# #             pinfo.raw_iops_sys = None
+# #             pinfo.iops_sys = None
+# #
+# #         fparams = self.get_params_from_fio_report()
+# #         fio_report_bw = sum(fparams['flt_bw'])
+# #         fio_report_iops = sum(fparams['flt_iops'])
+# #
+# #         agg_bw = agg_data(pinfo.raw_bw)
+# #         agg_iops = agg_data(pinfo.raw_iops)
+# #
+# #         log_bw_avg = average(agg_bw)
+# #         log_iops_avg = average(agg_iops)
+# #
+# #         # update values to match average from fio report
+# #         coef_iops = fio_report_iops / float(log_iops_avg)
+# #         coef_bw = fio_report_bw / float(log_bw_avg)
+# #
+# #         bw_log = data_property([val * coef_bw for val in agg_bw])
+# #         iops_log = data_property([val * coef_iops for val in agg_iops])
+# #
+# #         bw_report = data_property([fio_report_bw])
+# #         iops_report = data_property([fio_report_iops])
+# #
+# #         # When IOPS/BW per thread is too low
+# #         # data from logs is rounded to match
+# #         iops_per_th = sum(sum(pinfo.raw_iops, []), [])
+# #         if average(iops_per_th) > 10:
+# #             pinfo.iops = iops_log
+# #             pinfo.iops2 = iops_report
+# #         else:
+# #             pinfo.iops = iops_report
+# #             pinfo.iops2 = iops_log
+# #
+# #         bw_per_th = sum(sum(pinfo.raw_bw, []), [])
+# #         if average(bw_per_th) > 10:
+# #             pinfo.bw = bw_log
+# #             pinfo.bw2 = bw_report
+# #         else:
+# #             pinfo.bw = bw_report
+# #             pinfo.bw2 = bw_log
+# #
+# #         self._pinfo = pinfo
+# #
+# #         return pinfo
+#
+# # class TestResult:
+# #     """Hold all information for a given test - test info,
+# #     sensors data and performance results for test period from all nodes"""
+# #     run_id = None  # type: int
+# #     test_info = None  # type: Any
+# #     begin_time = None  # type: int
+# #     end_time = None  # type: int
+# #     sensors = None  # Dict[Tuple[str, str, str], TimeSeries]
+# #     performance = None  # Dict[Tuple[str, str], TimeSeries]
+# #
+# #     class TestResults:
+# #         """
+# #         this class describe test results
+# #
+# #         config:TestConfig - test config object
+# #         params:dict - parameters from yaml file for this test
+# #         results:{str:MeasurementMesh} - test results object
+# #         raw_result:Any - opaque object to store raw results
+# #         run_interval:(float, float) - test tun time, used for sensors
+# #         """
+# #
+# #         def __init__(self,
+# #                      config: TestConfig,
+# #                      results: Dict[str, Any],
+# #                      raw_result: Any,
+# #                      run_interval: Tuple[float, float]) -> None:
+# #             self.config = config
+# #             self.params = config.params
+# #             self.results = results
+# #             self.raw_result = raw_result
+# #             self.run_interval = run_interval
+# #
+# #         def __str__(self) -> str:
+# #             res = "{0}({1}):\n    results:\n".format(
+# #                 self.__class__.__name__,
+# #                 self.summary())
+# #
+# #             for name, val in self.results.items():
+# #                 res += "        {0}={1}\n".format(name, val)
+# #
+# #             res += "    params:\n"
+# #
+# #             for name, val in self.params.items():
+# #                 res += "        {0}={1}\n".format(name, val)
+# #
+# #             return res
+# #
+# #         def summary(self) -> str:
+# #             raise NotImplementedError()
+# #             return ""
+# #
+# #         def get_yamable(self) -> Any:
+# #             raise NotImplementedError()
+# #             return None
+#
+#
+#
+#             # class MeasurementMatrix:
+# #     """
+# #     data:[[MeasurementResult]] - VM_COUNT x TH_COUNT matrix of MeasurementResult
+# #     """
+# #     def __init__(self, data, connections_ids):
+# #         self.data = data
+# #         self.connections_ids = connections_ids
+# #
+# #     def per_vm(self):
+# #         return self.data
+# #
+# #     def per_th(self):
+# #         return sum(self.data, [])
+#
+#
+# # class MeasurementResults:
+# #     data = None  # type: List[Any]
+# #
+# #     def stat(self) -> StatProps:
+# #         return data_property(self.data)
+# #
+# #     def __str__(self) -> str:
+# #         return 'TS([' + ", ".join(map(str, self.data)) + '])'
+# #
+# #
+# # class SimpleVals(MeasurementResults):
+# #     """
+# #     data:[float] - list of values
+# #     """
+# #     def __init__(self, data: List[float]) -> None:
+# #         self.data = data
+# #
+# #
+# # class TimeSeriesValue(MeasurementResults):
+# #     """
+# #     data:[(float, float, float)] - list of (start_time, lenght, average_value_for_interval)
+# #     odata: original values
+# #     """
+# #     def __init__(self, data: List[Tuple[float, float]]) -> None:
+# #         assert len(data) > 0
+# #         self.odata = data[:]
+# #         self.data = []  # type: List[Tuple[float, float, float]]
+# #
+# #         cstart = 0.0
+# #         for nstart, nval in data:
+# #             self.data.append((cstart, nstart - cstart, nval))
+# #             cstart = nstart
+# #
+# #     @property
+# #     def values(self) -> List[float]:
+# #         return [val[2] for val in self.data]
+# #
+# #     def average_interval(self) -> float:
+# #         return float(sum([val[1] for val in self.data])) / len(self.data)
+# #
+# #     def skip(self, seconds) -> 'TimeSeriesValue':
+# #         nres = []
+# #         for start, ln, val in self.data:
+# #             nstart = start + ln - seconds
+# #             if nstart > 0:
+# #                 nres.append([nstart, val])
+# #         return self.__class__(nres)
+# #
+# #     def derived(self, tdelta) -> 'TimeSeriesValue':
+# #         end = self.data[-1][0] + self.data[-1][1]
+# #         tdelta = float(tdelta)
+# #
+# #         ln = end / tdelta
+# #
+# #         if ln - int(ln) > 0:
+# #             ln += 1
+# #
+# #         res = [[tdelta * i, 0.0] for i in range(int(ln))]
+# #
+# #         for start, lenght, val in self.data:
+# #             start_idx = int(start / tdelta)
+# #             end_idx = int((start + lenght) / tdelta)
+# #
+# #             for idx in range(start_idx, end_idx + 1):
+# #                 rstart = tdelta * idx
+# #                 rend = tdelta * (idx + 1)
+# #
+# #                 intersection_ln = min(rend, start + lenght) - max(start, rstart)
+# #                 if intersection_ln > 0:
+# #                     try:
+# #                         res[idx][1] += val * intersection_ln / tdelta
+# #                     except IndexError:
+# #                         raise
+# #
+# #         return self.__class__(res)
+#
+#
+# def console_report_stage(ctx: TestRun) -> None:
+#     # TODO(koder): load data from storage
+#     raise NotImplementedError("...")
+#     # first_report = True
+#     # text_rep_fname = ctx.config.text_report_file
+#     #
+#     # with open(text_rep_fname, "w") as fd:
+#     #     for tp, data in ctx.results.items():
+#     #         if 'io' == tp and data is not None:
+#     #             rep_lst = []
+#     #             for result in data:
+#     #                 rep_lst.append(
+#     #                     IOPerfTest.format_for_console(list(result)))
+#     #             rep = "\n\n".join(rep_lst)
+#     #         elif tp in ['mysql', 'pgbench'] and data is not None:
+#     #             rep = MysqlTest.format_for_console(data)
+#     #         elif tp == 'omg':
+#     #             rep = OmgTest.format_for_console(data)
+#     #         else:
+#     #             logger.warning("Can't generate text report for " + tp)
+#     #             continue
+#     #
+#     #         fd.write(rep)
+#     #         fd.write("\n")
+#     #
+#     #         if first_report:
+#     #             logger.info("Text report were stored in " + text_rep_fname)
+#     #             first_report = False
+#     #
+#     #         print("\n" + rep + "\n")
+#
+#
+# # def test_load_report_stage(cfg: Config, ctx: TestRun) -> None:
+# #     load_rep_fname = cfg.load_report_file
+# #     found = False
+# #     for idx, (tp, data) in enumerate(ctx.results.items()):
+# #         if 'io' == tp and data is not None:
+# #             if found:
+# #                 logger.error("Making reports for more than one " +
+# #                              "io block isn't supported! All " +
+# #                              "report, except first are skipped")
+# #                 continue
+# #             found = True
+# #             report.make_load_report(idx, cfg['results'], load_rep_fname)
+# #
+# #
+#
+# # def html_report_stage(ctx: TestRun) -> None:
+#     # TODO(koder): load data from storage
+#     # raise NotImplementedError("...")
+#     # html_rep_fname = cfg.html_report_file
+#     # found = False
+#     # for tp, data in ctx.results.items():
+#     #     if 'io' == tp and data is not None:
+#     #         if found or len(data) > 1:
+#     #             logger.error("Making reports for more than one " +
+#     #                          "io block isn't supported! All " +
+#     #                          "report, except first are skipped")
+#     #             continue
+#     #         found = True
+#     #         report.make_io_report(list(data[0]),
+#     #                               cfg.get('comment', ''),
+#     #                               html_rep_fname,
+#     #                               lab_info=ctx.nodes)
+#
+# #
+# # def load_data_from_path(test_res_dir: str) -> Mapping[str, List[Any]]:
+# #     files = get_test_files(test_res_dir)
+# #     raw_res = yaml_load(open(files['raw_results']).read())
+# #     res = collections.defaultdict(list)
+# #
+# #     for tp, test_lists in raw_res:
+# #         for tests in test_lists:
+# #             for suite_name, suite_data in tests.items():
+# #                 result_folder = suite_data[0]
+# #                 res[tp].append(TOOL_TYPE_MAPPER[tp].load(suite_name, result_folder))
+# #
+# #     return res
+# #
+# #
+# # def load_data_from_path_stage(var_dir: str, _, ctx: TestRun) -> None:
+# #     for tp, vals in load_data_from_path(var_dir).items():
+# #         ctx.results.setdefault(tp, []).extend(vals)
+# #
+# #
+# # def load_data_from(var_dir: str) -> Callable[[TestRun], None]:
+# #     return functools.partial(load_data_from_path_stage, var_dir)