postprocessing added (plot and dev)
diff --git a/scripts/postprocessing/stat.py b/scripts/postprocessing/stat.py
new file mode 100644
index 0000000..893c0fc
--- /dev/null
+++ b/scripts/postprocessing/stat.py
@@ -0,0 +1,199 @@
+import sys
+import time
+
+from copy import deepcopy
+
+import numpy
+import scipy.optimize as scp
+import matplotlib.pyplot as plt
+
+import io_py_result_processor as io_test
+
+key_pos = {'blocksize': 0, 'direct_io': 1, 'name': 2}
+actions = ['randwrite', 'randread', 'read', 'write']
+types = ['s', 'd']
+colors = ['red', 'green', 'blue', 'cyan',
+          'magenta', 'black', 'yellow', 'burlywood']
+
+def get_key(x, no):
+    """ x = (), no = key_pos key """
+    keys = deepcopy(key_pos)
+    del keys[no]
+    key = [x[n] for n in keys.values()]
+    return tuple(key), x[key_pos[no]]
+
+
+def generate_groups(data, group_id):
+    """ select data for plot by group_id
+        data - processed_series"""
+    grouped = {}
+
+    for key, val in data.items():
+        new_key, group_val = get_key(key, group_id)
+        group = grouped.setdefault(new_key, {})
+        group[group_val] = val
+
+    return grouped
+
+
+def gen_dots(val):
+    """Generate dots from real data
+       val = dict (x:y)
+       return ox, oy lists """
+    oy = []
+    ox = []
+    for x in sorted(val.keys()):
+        ox.append(int(x[:-1]))
+        if val[x][0] != 0:
+            oy.append(1.0/val[x][0])
+        else:
+            oy.append(0)
+    return ox, oy
+
+
+def gen_line_numpy(x, y):
+    A = numpy.vstack([x, numpy.ones(len(x))]).T
+    coef = numpy.linalg.lstsq(A, y)[0]
+    funcLine = lambda tpl, x: tpl[0] * x + tpl[1]
+    print coef
+    return x, funcLine(coef, x)
+
+
+def gen_line_scipy(x, y):
+    funcLine = lambda tpl, x: tpl[0] * x + tpl[1]
+    ErrorFunc = lambda tpl, x, y: 1.0 - y/funcLine(tpl, x)
+    tplInitial = (1.0, 0.0)
+    # print x, y
+    tplFinal, success = scp.leastsq(ErrorFunc, tplInitial[:], args=(x, y),
+                                    diag=(1./x.mean(), 1./y.mean()))
+    if success not in range(1, 4):
+        raise ValueError("No line for this dots")
+    xx = numpy.linspace(x.min(), x.max(), 50)
+    print tplFinal
+    # print x, ErrorFunc(tplFinal, x, y)
+    return xx, funcLine(tplFinal, xx)
+
+
+def gen_app_plot(key, val, plot, color):
+    """ Plots with fake line and real dots around"""
+    ox, oy = gen_dots(val)
+    name = "_".join(str(k) for k in key)
+    if len(ox) < 2:
+        # skip single dots
+        return False
+    # create approximation
+    x = numpy.array(ox)#numpy.log(ox))
+    y = numpy.array(oy)#numpy.log(oy))
+    print x, y
+    try:
+        print name
+        x1, y1 = gen_line_scipy(x, y)
+        plot.plot(x1, y1, color=color)
+        # 
+        #plot.loglog(x1, y1, color=color)
+    except ValueError:
+        # just don't draw it - it's ok
+        # we'll see no appr and bad dots
+        # not return False, because we need see dots
+        pass
+    plot.plot(x, y, '^', label=name, markersize=7, color=color)
+    #plot.loglog(x, y, '^', label=name, markersize=7, color=color)
+    return True
+
+
+def save_plot(key, val):
+    """ one plot from one dict item with value list"""
+    ox, oy = gen_dots(val)
+    name = "_".join(str(k) for k in key)
+    plt.plot(ox, oy, label=name)
+
+
+def plot_generation(fname, group_by):
+    """ plots for value group_by in imgs by actions"""
+    data = list(io_test.load_io_py_file(fname))
+    item = io_test.Data("hdr")
+    for key, vals in io_test.groupby_globally(data, io_test.key_func).items():
+        item.series[key] = [val['iops'] for val in vals]
+    io_test.process_inplace(item)
+
+    pr_data = generate_groups(item.processed_series, group_by)
+    print pr_data
+
+    #fig = plt.figure()
+    plot = plt.subplot(111)
+
+    for action in actions:
+        for tp in types:
+            color = 0
+            hasPlot = False
+            for key, val in pr_data.items():
+                if action in key and tp in key:
+                    ok = gen_app_plot(key, val, plot, colors[color])
+                    hasPlot = hasPlot or ok
+                    color += 1
+                    # use it for just connect dots
+                    #save_plot(key, val)
+            if hasPlot:
+                # Shrink current axis by 10%
+                box = plot.get_position()
+                plot.set_position([box.x0, box.y0 + box.height * 0.1,
+                     box.width, box.height * 0.9])
+
+                # Put a legend to the bottom
+                plot.legend(loc='lower center', bbox_to_anchor=(0.5, -0.25),
+                            fancybox=True, shadow=True, ncol=4,
+                            fontsize='xx-small')
+                plt.title("Plot for %s on %s" % (group_by, action))
+                plt.ylabel("time")
+                plt.xlabel(group_by)
+                plt.grid()
+                # use it if want scale plot somehow
+                # plt.axis([0.0, 5000.0, 0.0, 64.0])
+                name = "%s__%s_%s.png" % (group_by, action, tp)
+                plt.savefig(name, format='png', dpi=100)
+            plt.clf()
+            plot = plt.subplot(111)
+            color = 0
+
+
+def deviation_on_deviation(groups_list, data):
+    """ calc deviation of data all and by selection groups"""
+    total_dev = io_test.round_deviation(io_test.med_dev(data))
+    grouped_dev = [total_dev]
+    for group in groups_list:
+        beg = 0
+        end = group
+        local_dev = []
+        while end <= len(data):
+            local_dev.append(io_test.round_deviation(io_test.med_dev(data[beg:end]))[0])
+            beg += group
+            end += group
+        grouped_dev.append(io_test.round_deviation(io_test.med_dev(local_dev)))
+    return grouped_dev
+
+
+
+def deviation_generation(fname, groups_list):
+    """ Print deviation by groups for data from fname """
+    CONC_POS = key_pos['concurence']
+    int_list = [int(i) for i in groups_list]
+    data = list(io_test.load_io_py_file(fname))
+    item = io_test.Data("hdr")
+    for key, vals in io_test.groupby_globally(data, io_test.key_func).items():
+        item.series[key] = [val['iops'] * key[CONC_POS] for val in vals]
+        print deviation_on_deviation(int_list, item.series[key])
+
+
+def main(argv):
+    if argv[1] == "plot":
+        plot_generation(argv[2], argv[3])
+    elif argv[1] == "dev":
+        deviation_generation(argv[2], argv[3:])
+    
+
+if __name__ == "__main__":
+    exit(main(sys.argv))
+
+
+
+